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Abstract

Recent studies have shown that sparse representation (SR) can deal well with many computer vision

problems, and its kernel version owns more powerful classification capability. In this paper, we address

the application of a cooperative sparse representation (Co-SR) in semi-supervised image annotation which

can grow the amount of labeled images for further use in training image classifiers. Provided a set of

labeled (training) images and a set of unlabeled (test) images, the usual SR method, which we call forward

SR, is to represent each unlabeled image with several labeled ones, and then to annotate the unlabeled

image according to the annotations of these labeled ones. However, to the best of our knowledge, the SR

method in an opposite direction, which we call backward SR, to represent each labeled image with several

unlabeled images, and then to annotate any unlabeled image according to the annotations of the labeled

images which the unlabeled image is selected by the backward SR to represent, has not been addressed

by researchers. In this paper, we explore how much the backward SR can contribute to image annotation,

and be complementary to the forward SR. The co-training, which has been proved to be a semi-supervised

method improving each other only if two classifiers are relatively independent, is then adopted to testify

this complementary nature between two SRs in opposite directions. Finally, the co-training of two SRs

in kernel space builds a cooperative kernel sparse representation (Co-KSR) method for image annotation.
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Experimental results and analyses show that two KSRs in opposite directions are complementary, and

Co-KSR improves much over either single one of them with an image annotation performance better than

other state-of-the-art semi-supervised classifiers such as TSVM (Transductive Support Vector Machine),

LGC (Local and Global Consistency) and GFHF (Gaussian Fields and Harmonic Functions). Comparative

experiments with a non-sparse solution are also performed to show that the sparsity plays an important

role in the cooperation of image representations in two opposite directions. Our work will extend the

application of sparse representation in image annotation and retrieval.

Index Terms

image annotation, sparse representation, co-training, semi-supervised learning, image retrieval

I. INTRODUCTION

In the past decade, the number of images available online and offline has dramatically increased.

TBIR (Text-Based Image Retrieval) search engines, which are popular for image retrieval, retrieve

relevant images without using any content information. Recently, many machine learning methods have

been developed to annotate new images automatically by making use of available training images with

annotations [6][25][26][37][47][44]. Thus, assigning images with correct class labels or relevant keywords

by visual contents in the images is very significant for further learning of image classification and

annotation models. However, manual annotation is becoming more and more time-consuming and difficult

due to the increasing size of image databases, and the lack of annotated images hinders the efficient and

reliable construction of various classifiers. Therefore, semi-supervised techniques, which propagate labels

from a limited number of labeled images to unlabeled ones, has recently attracted lots of research attention

[18][45][46][48][19][49][39][38][10].

In essence, the task of machine learning is to associate keywords with visual contents in images, and

establish a mapping from low-level visual features to high-level semantic concepts. Given some labeled

images with annotations, this mapping for an unlabeled image can be implemented by approximately

representing the unlabeled image with several labeled images according to its visual content similarity to

the labeled images, and the annotations of the unlabeled image are then indicated by those of the labeled

images (Figure 1(a)). However, in a dense solution, the number of labeled images which are selected

to approximately represent the unlabeled image is large, and these images may be from many classes.

So the dense solution is not especially informative for classifying the unlabeled image [40]. Sparse

representation (SR) [40] can automatically select a small number of labeled images and approximate
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Fig. 1. Comparison of two examples of the forward SR on the ImageCLEF-VCDT 2008 dataset. We can see that 1) any

one image is more or less similar to the images which are utilized to represent it by the SR in the feature space, and the test

image can be annotated according to the annotations of the labeled images; 2) The 1st unlabeled image (a) is approximately

equal to the weighted sum of two labeled images both with the ’person’ annotation, while the 2nd unlabeled image (b) is

approximately equal to the weighted sum of three labeled images, only one with the ’person’ annotation and two without the

’person’ annotation; Thereby, it can be deduced that the 1st test image owns a higher confidence with which it belongs to the

concept ’person’ than the 2nd one.

the unlabeled image with a weighted sum of them. Due to its good performance, SR has been applied

into many computer vision topics such as image annotation [37], image restoration [28][29], and image

classification [15][40][42][17].

In this paper, we discuss the SR’s application in image auto-annotation. Apparently, in an ideal situation,

an unlabeled image associated with the target concept or class can be thoroughly represented by a

few labeled images annotated with the corresponding keywords, and the weights to the labeled images

annotated without the keywords are all zeros in sparse representation. However, this fact doesn’t hold in

most cases due to the existence of other annotations (objects) and noise in the unlabeled image. Instead, an

unlabeled image related to the target class is usually represented by both relevant and irrelevant labeled

images. In these cases, the irrelevant components in sparse representation can be considered as noise

deviating from the target class. So the confidence or score with which the unlabeled image belongs to the

target class depends on the proportion of the irrelevant components in the whole sparse representation. For

example in Figure 1, the first unlabeled image is approximately represented as the weighted sum of two
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Fig. 2. Sketches of two examples of the forward and backward sparse representation being complementary to each other: (a)

on covering new concepts; (b) on strengthening the associations.

labeled images both with the ’person’ annotation, while the second unlabeled image is approximately

represented as the weighted sum of three labeled images, only one with the ’person’ annotation and

two without the ’person’ annotation. Thereby, it can be deduced that the first test image owns a higher

confidence with which it’s associated with the concept ’person’ than the second one.

Provided a set of labeled images and a set of unlabeled images, as a counter case of the usual SR

which represents each unlabeled (test) image with a few labeled (training) images, each labeled image

can also be represented with a few unlabeled images by the SR in a backward direction. In this case, if

one certain unlabeled image is related to the target class, it’s apt to be selected to represent the relevant

labeled images. On the contrary, if the unlabeled image is not related to the target class, it’s apt not to be

selected to represent the relevant labeled images. Obviously, the backward SR contains useful information

for the image annotation, and the unlabeled image can be annotated according to the annotations of the

labeled images which it is selected to represent by the backward SR. It seems very interesting to find

out how much this backward SR can contribute to the image annotation. Unfortunately, to the best of

our knowledge, this problem has not been addressed by existing research efforts. The motivation of this

paper also lies in that the SRs in two opposite directions may provide complementary information to

each other. For example, in Figure 2(a), when the backward SR associates the unlabeled image yi with
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Fig. 3. An example of comparison between the forward and backward sparse representations on the ImageCLEF-VCDT 2008

dataset. (a) The forward SR represents an unlabeled image with several labeled images; (b) The backward SR represents a

labeled image with several unlabeled images. We can see that the backward SR can supplement the annotation ’sky’ which the

forward SR misses, while the forward SR can supplement the annotation ’buildings’ which the backward SR misses.

the labeled image xk which the forward SR cannot associate yi with, xk may contain some new concepts

which the labeled images utilized by the forward SR to represent yi do not cover. Thereby, the backward

SR can be a supplement to the forward SR. And in Figure 2(b), the labeled image xj is utilized by the

forward SR to represent the unlabeled image yi, and on the other side, yi is utilized by the backward

SR to represent xj . So the association between yi and xj is then strengthened, which implies that the

probability with which yi contains the same concepts as xj is higher. This is also a complementary case.

Figure 3 is an example of the case of Figure 2(a), which shows that the backward SR remedies the

annotation ’sky’ which the forward SR misses for the unlabeled image, and the forward SR remedies the

annotation ’buildings’ which the backward SR misses. So, exploring whether the sparse representations

in two opposite directions can really provide this complementary information or not for image annotation

is not only interesting from a theoretical point of view, but also very important for the SR’s practical

applications in image classification, annotation and retrieval.

The contribution of this paper is to design for image annotation two kinds of SR algorithms in opposite

directions, to explore their complementary nature and then to build a cooperative sparse representation

method which effectively combines them, with the expectation of the performance improvement of image
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annotation. Labeled images and unlabeled ones are both utilized to build our classification model to

annotate the unlabeled images, so we will compare it by experiments with other state-of-the-art semi-

supervised methods such as TSVM (Transductive Support Vector Machine) [20] and two graph-based

semi-supervised methods: LGC (Local and Global Consistency) [48] and GFHF (Gaussian Fields and

Harmonic Functions) [49]. We will also compare our approach with a fusion of non-sparse solutions

in opposite directions to show that the sparsity of SR plays an important role in the cooperative image

annotation.

The rest of this paper is organized as follows. Section II surveys related work. The forward and

backward SR algorithms for image annotation are depicted in Section III. Section IV proposes the

cooperative sparse representation algorithm which combines the forward SR with the backward SR by co-

training. Section V depicts the kernel trick we adopt to implement the cooperative sparse representation.

Section VI presents our experiments and discussions. Finally, some conclusions are drawn in Section

VII.

II. RELATED WORK

Recently, we have witnessed many applications of sparse representation in visual recognition. Wright

et al. [40] exploited the sparse representation classification (SRC) method for robust face recognition

and Wagner et al. [36] further pushed its practical application. Gao et al. proposed Laplacian sparse

representation and obtained better performance for image classification in [16]. Yuan et al. [43] proposed

a joint sparse representation model which combines multiple features for image classification. Zhang et

al. [44] introduced sparse representation into feature selection for image annotation. They all assumed

that any test image can be approximately a linear combination of a basis set formed by the training

images, namely, y = Xa, where X = [x1, x2, ..., xm] ∈ Rd×m denotes m bases and y ∈ Rd is a new test

image. If m > d, the solution of a which satisfies y = Xa is not unique. This difficulty can be conquered

by assuming that the test image y can be sufficiently represented by using only the training images from

the same class and with the most similar visual features to the test image. In this case, the solution of

a should be sparse if the number of classes or the size of the image database is relatively large while

the percentage of positive images for each class is low. For instance, in the dataset of PASCAL-VOC

2010, the percentages of positive images are on average only about 5.0% for all 20 classes, and for the

class ’Cow’, which owes the fewest positive images, the percentage of positive images is only about

1.7%. So on the condition of the above assumption, a very small percentage of the entries of the solution

of a should be nonzero. Moreover, this proportion could be further reduced by the assumption that the
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test image is represented using only the training images with the most similar visual features to the test

image even though these images belong to the same class, due to high complexity and diversity of real

scene images. The sparsity can be solved by minimizing the ℓ1-norm of a. Compared with the ℓ1-norm

minimization, the ℓ2-norm one usually results in a dense solution, while the ℓ0-norm one is NP-hard

and difficult to compute. The ℓ1-norm minimization problem can be solved by efficient methods such as

standard linear programming [5], homotopy algorithms [11], and so on.

If the forward and backward sparse representations complementarily annotate the images, those images

with the most confident predictions of two SRs in different directions can be iteratively moved from the

unlabeled set to the labeled set, which is expected to improve step by step the classification and annotation

performances. This iterative training process is called co-training [4], which is a semi-supervised learning

algorithm firstly proposed by Blum and Mitchell for web-page classification with only a small size of

labeled examples and a large size of unlabeled examples. The co-training of Blum and Mitchell was based

on the assumption that two feature sets of each example are conditionally independent given the class and

each feature set is sufficient for classification. This idea of two different feature sets can be transformed

to that of two different classifier models. Krogel and Scheffer [22] further showed in 2004 that co-training

is beneficial only if two classifications are relatively independent, namely, one classifier correctly labels

some examples which the other classifier misclassifies. Otherwise, if both classifiers agree on all the

unlabeled data, co-training does not create any new information for single classifiers. Therefore, in this

paper, we will adopt co-training to explore the difference and complementarity between the forward and

backward SRs, and to build a cooperative sparse representation method which effectively combines them

to improve image annotation performance.

Another important recent effort related to sparse representation is the kernel sparse representation

proposed by Gao et al. for image classification in [15]. The kernel trick [32] maps non-linear separable

features into a higher dimensional feature space, in which features of the same class are closely grouped

together and those of different classes become linearly separable. Similarly, an image could be better

linearly represented with a small number of other ones in the kernel space than in the original lower

dimensional feature space. The kernel sparse representation(KSR) assumes that the sparse representation

for the images can be more easily found, and the reconstruction error may be reduced as well. The KSR

was applied into image classification and face recognition, and achieved better performance than SR in

the original feature space. In our work, we will also implement the cooperative sparse representation in

the kernel space and build a cooperative kernel sparse representation (Co-KSR), in order to obtain better

image annotation performance.
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III. IMAGE ANNOTATION BASED ON SPARSE REPRESENTATIONS

Given m bases X = [x1, x2, ..., xm] ∈ Rd×m and a new test signal y ∈ Rd, sparse representation aims

to find a sparse vector a ∈ Rm where y can be represented as:

y = Xa (1)

This sparse representation problem can be solved by minimizing the following objective function:

min
a

∥y −Xa∥2 + λ∥a∥1

subject to ∥xi∥2 ≤ 1

(2)

where ∥.∥ denotes the ℓ2-norm, ∥.∥1 denotes the ℓ1-norm; the first term is to minimize the reconstruction

error, while the second one is to control the sparsity of the vector a, with the tradeoff parameter λ. A

larger λ usually results in a sparser a solution.

Actually, real-world data are complex and noisy, so the test signal y usually cannot be exactly

represented by a sparse superposition of the bases. Instead, the test signal y can be precisely represented

as:

y = Xa+ e (3)

where the vector e ∈ Rd is the signal noise.

In this paper, we will design for image annotation two kinds of SR algorithms in opposite directions.

We call them the forward SR and the backward SR, respectively.

A basic problem of image annotation can be described as follows. Given a class, a set of labeled

images X = [x1, x2, ..., xm] ∈ Rd×m with their annotations L = [l1, l2, ..., lm] indicating whether they

belong to the class or not, and a set of unlabeled images Y = [y1, y2, ..., yn] ∈ Rd×n, where each image

can be expressed by a d-dimension vector, m and n are the numbers of labeled and unlabeled images,

respectively, the image annotation task is to assign each unlabeled image a confidence or score with

which it’s related to the class, or to determine whether the unlabeled image belongs to the class or not.

A. Forward Sparse Representation (Forward-SR)

As described in Eqn. (3), any unlabeled image yi can be represented by a linear combination of a few

labeled images as
yi = Xai + ei

= α1ix1 + α2ix2 + ...+ αmixm + ei

(4)
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where ai = [α1i, α2i, ..., αmi]
T . This method which represents unlabeled images with labeled images is

called forward sparse representation (Forward-SR) in our paper.

If the labeled set is divided into two subsets: X+ = [x+1 , x
+
2 , ..., x

+
u ] and X− = [x−1 , x

−
2 , ..., x

−
v ], where

u+ v = m, X+ and X− are mutually exclusive, consisting of the samples belonging to the annotation

class and not, respectively, then the sparse representation of the unlabeled image yi in Eqn. (4) can also

be written as:
yi = α+

1ix
+
1 + α+

2ix
+
2 + ...+ α+

uix
+
u

+ α−
1ix

−
1 + α−

2ix
−
2 + ...+ α−

vix
−
v + ei

(5)

where α+
ji and α−

ji are two elements of ai, and denote the weights to x+j and x−j , respectively. If the

unlabeled image yi belongs to the class, in an ideal situation where yi doesn’t contain any noise deviating

from the concept which the class indicates, yi can be thoroughly represented by a few positive labeled

samples from X+, while the weights to the labeled samples from X− are all zeros, namely, α−
ji = 0

for all j = 1, 2, ..., v. On the contrary, if the unlabeled image yi doesn’t belong to the annotation class,

in an ideal situation where yi doesn’t contain any contents associated with the concept which the class

indicates, yi can be thoroughly represented by a few negative labeled samples from X−, while the weights

to the labeled samples from X+ are all zeros, namely, α+
ji = 0 for all j = 1, 2, ..., u.

However, in most situations, the unlabeled image yi is represented by both a few positive labeled

samples and a few negative labeled ones due to noise or concept correlations. In these cases, the proportion

of the positive components in the whole sparse representation

∑
j α

+
ji∑

j α
+
ji +

∑
j α

−
ji

(6)

can be assigned to yi as the score1 or degree with which it belongs to the annotation class.

Note that the reconstruction error ∥ei∥2 = ∥yi −Xai∥2 is invariant to simultaneously multiply X by

a scalar and ai by the inverse of the scalar, and the non-zero elements α+
ji or α−

ji in ai are used as the

similarities between the unlabeled image yi and the corresponding labeled samples. So the ℓ2 norm of

each basis x+j or x−j should be normalized to the same (usually as 1) to ensure the scoring by Eqn. (6)

to be fair. Then the objective function (2) is modified to be:

min
ai

∥yi −XΛXai∥2 + λ∥ai∥1 (7)

1The literature [40] used the residual ∥yi −Σjα
+
jix

+
j ∥2 for human face classification, by which the score can also be defined

as 1/∥yi − Σjα
+
jix

+
j ∥2. Our experiments show that this definition is slightly worse than that of Eqn. (6) defined in our paper

by the results evaluated by the AUC and EER criteria.
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And the unlabeled image yi can be represented as:

yi = XΛXai + qi (8)

where ΛX = diag{1/∥x1∥2, 1/∥x2∥2, ..., 1/∥xm∥2} is the diagonal matrix to normalize each basis in the

X , and the vector qi ∈ Rd denotes the noise vector.

Considering all unlabeled images Y = [y1, y2, ..., yn], then

Y = XΛXA+Q (9)

where Y ∈ Rd×n, A = [a1, a2, ..., an] ∈ Rm×n, and Q = [q1, q2, ..., qn] ∈ Rd×n are the image noise.

The image annotation procedure based on the forward sparse representation is summarized as Algorithm

1.

Algorithm 1 Forward Sparse Representation (Forward-SR) for Image Annotation.
1: Solve the Forward SR.

for i = 1:n

(i): Input the matrix of labeled images X = [x1,

x2, ..., xm] and the unlabeled image yi.

(ii): Solve the minimization problem depicted by

Eqn. (7) and obtain the sparse vector ai.

end

Obtain the sparse matrix A = [a1, a2, ..., an].

2: Annotate unlabeled images.

for each annotation class

(i): Input the class labels of all labeled images L =

{l1, l2, ..., lm}.

for i=1:n

(ii): Assign yi the score computed by Eqn. (6)

using ai and L.

end

(iii): Annotate the unlabeled images by their scores.

end each annotation class
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B. Backward Sparse Representation

Provided a set of unlabeled images Y = [y1, y2, ..., yn] ∈ Rd×n, any labeled image xj can also be

represented by sparse representation as:

xj = Y ΛY bj + rj (10)

where the sparse vector bj can be solved by minimizing the following objective function:

min
bi

∥xi − Y ΛY bi∥2 + λ∥bi∥1 (11)

This method which represents labeled images with unlabeled images is called backward sparse represen-

tation (Backward-SR) in this paper.

Considering all labeled images X = [x1, x2, ..., xm] ∈ Rd×m, we obtain

X = Y ΛY B +R (12)

where

B = [b1, b2, ..., bm] ∈ Rn×m, (13)

R = [r1, r2, ..., rm] ∈ Rd×m is the image noise , and ΛY = diag{1/∥y1∥2, 1/∥y2∥2, ..., 1/∥yn∥2} is the

diagonal matrix to normalize Y .

Here, Eqn. (13) can be written as

B =


b
′

1

b
′

2

...

b
′

n

 ∈ Rn×m, (14)

where b
′

i denotes the ith row of B. Considering the elements in b
′

i and resorting them, then we can obtain

b
′

i = [β+
i1, β

+
i2, ..., β

+
iu, β

−
i1, β

−
i2, ..., β

−
iv], (15)

where u+v = m, β+
ij and β−

ij denote the connection weight between yi and x+j , and that between yi and

x−j , respectively. Different from the case of the Forward-SR, if the unlabeled image yi belongs to the

annotation class, in an ideal situation, yi can only be selected to represent the positive labeled images, so

β−
ij = 0 for all j = 1, 2, ..., v. On the contrary, if the unlabeled image yi does not belong to the annotation

class, in an ideal situation, yi can only be selected to represent the negative labeled images, so β+
ij = 0

for all j = 1, 2, ..., u. Thereby, the proportion of β+
ij in all elements of the vector b

′

i expresses the score
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or degree with which the unlabeled image yi belongs to the annotation class, and yi can be assigned the

score ∑
j β

+
ij∑

j β
+
ij +

∑
j β

−
ij

(16)

Algorithm 2 Backward Sparse Representation (Backward-SR) for Image Annotation.
1: Solve the Backward SR.

for i = 1:m

(i): Input the matrix of unlabeled images Y = [y1, y2,

..., yn] and the labeled image xi.

(ii): Solve the minimization problem depicted by

Eqn. (11) and obtain the sparse vector bi.

end

Obtain the sparse matrix B = [b1, b2, ..., bm].

2: Annotate unlabeled images.

for each annotation class

(i): Input the class labels of all labeled images L =

{l1, l2, ..., lm}.

for i=1:n

(ii): Assign yi the score computed by Eqn. (16)

using b
′

i and L.

end

(iii): Annotate the unlabeled images by their scores.

end each annotation class

The image annotation procedure based on the backward sparse representation is summarized as Algo-

rithm 2.

IV. COOPERATIVE SPARSE REPRESENTATIONS FOR IMAGE ANNOTATION

In this section, a cooperative sparse representation method which combines the forward-SR and

backward-SR by using co-training is proposed for image annotation.
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A. Co-training of Forward and Backward Sparse Representations

Co-training [4], which is an iterative semi-supervised learning algorithm, can enhance the classification

performances of two classifiers which are complementary and relatively independent to each other. Here,

it is utilized to demonstrate the difference and complementarity between the forward and backward

SRs, and to build an effective cooperative sparse representation method to improve image annotation

performance. The co-training of forward and backward SRs is described as Algorithm 3.

Algorithm 3 Co-training of Forward and Backward Sparse Representations.
Given a labeled image set X = [x1, x2, ..., xm] with class labels and an unlabeled image set Y =

[y1, y2, ..., yn] to annotate,

for each annotation class:

Loop for k iterations:

1: Solve the forward-SR with X and Y , and obtain the sparse matrix A which satisfies Eqn. (9).

2: Solve the backward-SR with X and Y , and obtain the sparse matrix B which satisfies Eqn. (12).

3: Assign the unlabeled images in Y the scores computed by Eqn. (6) using the sparse matrix A.

4: Assign the unlabeled images in Y the scores computed by Eqn. (16) using the sparse matrix B.

5: Select the unlabeled image with the highest score and the one with the lowest score by the forward-

SR, remove them from Y , and add them into X .

6: Select the unlabeled image with the highest score and the one with the lowest score by the backward-

SR, remove them from Y , and add them into X .

end Loop

end each annotation class

Here, only one image with the highest score and one with the lowest score are selected by each of

the forward-SR and the backward-SR, namely, only totally 4 images are moved from Y to X for each

iteration. The varying of the numbers of selected positive and negative images per iteration in a reasonable

range results in little effect on the annotation performance, according to our experiments. The number

of iterations k is usually predefined by experience [4][22].

Also note that for the datasets in which each image has multiple class labels, the co-training has to be

run by class since the transmitted images from the unlabeled set to the labeled set differ between classes.
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B. Fusion of Forward and Backward Sparse Representations

A simple average fusion is usually performed when the co-training of two classifiers stops at the kth

iteration [4][22][41]. And the previous works [4][22] have proved that the average fusion after co-training

can further improve the performance. We follow these works, and propose an average fusion method to

combine the outputs of the forward-SR with the backward-SR for image annotation after the co-training.

As described in Section III, the connection weight between the ith test image and the jth training

image is defined as the jth-row-ith-column element of the matrix A, αji, by the forward-SR, and defined

as the ith-row-jth-column element of the matrix B, βij , by the Backward-SR. So the weighted-averaging

fusion of these two connection weights is as follows:

γji = (1− w)αji + wβij (17)

where w is the fusion weight which is usually set to be 0.5. Note that we normalize αji and βij to be in

the range of [0, 1] by the min-max normalization method: αji =
αji−minj αji

maxj αji−minj αji
, βij =

βij−minj βij

maxj βij−minj βij

before the average fusion is performed. Then the connection weights between the ith unlabeled image

and all m labeled images are ci = [γ1i, γ2i, ..., γmi]
T . Considering all n unlabeled images, we obtain:

C = [c1, c2, ..., cn]

= (1− w)A+ wBT
(18)

Like the case of the forward-SR, the connection weights in C depict the similarities and relevance degrees

between the unlabeled images and the labeled ones. So the unlabeled image yi is then assigned the score∑
j γ

+
ji∑

j γ
+
ji +

∑
j γ

−
ji

(19)

with which it belongs to the annotation class, where γ+ji and γ−ji denote the connection weight between

yi and x+j , and that between yi and x−j , respectively. Then we can annotate unlabeled images by their

scores.

This average fusion process could further exploit the complementary information between two SRs

in opposite directions and enhance the annotation performance if the co-training has not collected all

complementary information.

C. Independence between Two Opposite SRs

The key requirement of co-training is that the two classifiers are with difference or at least not so

tightly correlated [4][2][22]. The conditional independence of two opposite SRs depends on the sparsity

of SR and the diversity of scene images. The forward SR associates the test image yi with a very small
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subset of labeled images Xf ⊂ X and their class labels LXf
⊂ L thanks to the sparse nature, while the

backward SR associates yi with another very small subset of labeled images Xb ⊂ X and their class

labels LXb
⊂ L. In the meantime, because of the diversity of scene images, the connections between

yi and any labeled image in two opposite directions usually does not simultaneously appear. So the

sparsity of the SR and the diversity of scene images together ensure that the labeled subsets {Xf , LXf
}

and {Xb, LXb
} differ from each other or have few overlaps. According to the score definitions in Eqn.

(6) and Eqn. (16), the forward SR classifier and the backward SR classifier are actually based on the

label subsets LXf
and LXb

, respectively, so the difference between LXf
and LXb

would lead to different

predictions of the forward SR and the backward SR.

V. KERNEL TRICK

The kernel trick [32][1] maps nonlinearly separable features into a higher dimensional feature space

in which the features may be linearly separable. Similarly, the kernel trick could map nonlinearly or

non-sparsely representable features into a higher dimensional feature space in which the features may be

linearly and sparsely representable. Gao et al. [15] proposed kernel sparse representation(KSR), assuming

that the sparse representation for the images can be more easily found, and the reconstruction error may

be reduced as well. They applied KSR into image classification and face recognition, and achieved better

performance than SR in the original feature space. In our work, we also implement our cooperative sparse

representation in the kernel space.

Assume that there is a feature mapping ϕ : Rd → RH , d < H , which maps all image features to

a higher dimensional space, namely y → ϕ(y), X = [x1, x2, ..., xm] → χ = [ϕ(x1), ϕ(x2), ..., ϕ(xm)].

Then the objective function of sparse representation in the kernel space can be written as:

min
a

∥ϕ(y)− χa∥2 + λ∥a∥1 (20)

In our work, the Gaussian function κ(x1, x2) = exp(−ν∥x1−x2∥2) is used as the kernel function. Note

that ϕ(xi)Tϕ(xi) = κ(xi, xi) = 1, so the normalization constraint on the bases can be ignored.
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The objective function (20) can be expanded and written as follows:

∥ϕ(y)− χa∥2 + λ∥a∥1

= (ϕ(y)− χa)T (ϕ(y)− χa) + λ∥a∥1

= ϕ(y)Tϕ(y) + aTχTχa− ϕ(y)Tχa− aTχTϕ(y) + λ∥a∥1

= 1 + aTKXXa− 2aTKX(y) + λ∥a∥1

= E(a) + λ∥a∥1

(21)

where E(a) = 1+aTKXXa−2aTKX(y), KXX is an m∗m matrix whose elements {KXX}ij = κ(xi, xj),

and KX(y) is an m ∗ 1 vector whose elements {KX(y)}i = κ(xi, y). We can see that the changes of

the kernelized objective function to the original space only lies in the uses of KXX and KX(y). So the

homotopy algorithm [3] can be easily extended to solve this kernel sparse representation problem, with

the extra computations of KXX and KX(y).

Since X is always changing by iterations of the co-training, it seems necessary to compute KXX and

KX(y) repeatedly by iterations. However, we can avoid it by matrix decomposition. For the forward

kernel sparse representation, at the kth iteration of the co-training,

Ek(a) = 1 + aTKXkXk
a− 2aTKXk

(y) (22)

where Xk is the labeled image set at the kth iteration, and at the (k + 1)th iteration,

Ek+1(a) =1 + aTKXk+1Xk+1
a− 2aTKXk+1

(y)

=1 + aT

 KXkXk
KXkXnew

KXnewXk
KXnewXnew

 a

− 2aT

 KXk
(y)

KXnew
(y)


(23)

where Xk+1 = [Xk, Xnew], Xnew denotes the newly added images to the labeled set in the co-training.

Comparing Eqn. (23) with (22), we can see that at the (k + 1)th iteration, KXnewXk
is the transpose of

KXkXnew
, so we only need to compute KXkXnew

and KXnewXnew
in order to obtain KXk+1Xk+1

, with

the existing knowledge of KXkXk
at the kth iteration. Similarly, at the (k+1)th iteration, we only need

to compute KXnew
(y) in order to obtain KXk+1

(y), with the existing knowledge of KXk
(y) at the kth

iteration.

As for the backward kernel sparse representation, the kernelized bases are decreasing with the co-

training iterations. Apparently, KYk+1Yk+1
is a square submatrix of KYkYk

, and KYk+1
(y) is a subvector
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of KYk
(y). So the kernelized bases of the (k + 1)th iteration can be easily extracted from those of the

kth iteration by removing the components corresponding to the samples moved from the unlabeled set

to the labeled set.

VI. EXPERIMENTS AND DISCUSSIONS

In this section, we explore the effectiveness of the co-training of the forward and backward KSRs, and

evaluate the performance of the proposed cooperative kernel sparse representation (Co-KSR) by comparing

it with other state-of-the-art semi-supervised methods such as the TSVM (Transductive Support Vector

Machine) [20], LGC (Local and Global Consistency) [48] and GFHF (Gaussian Fields and Harmonic

Functions) [49]. We stop the co-training of the Co-KSR at the 100th iteration, and then calculate its

performance.

A. Experimental Setup

Datasets: Two image annotation datasets of famous campaigns: ImageCLEF-VCDT 2008 [35] and

PASCAL-VOC 2010 (Classification Task) [13] are used to perform our comparative study.

The ImageCLEF-VCDT task provides a training set of 1827 images with annotations from a set of

total 17 keywords, and a test set of 1000 images. We merge them together, and obtain a whole set of 2827

images. Then we randomly select (10%, 20%, ..., 60%) of images, respectively, from the whole set, and

use them as the labeled images while the rest as the unlabeled ones 2. So we have totally 6 experiments

for this dataset.

The image classification task of PASCAL-VOC 2010 [13] provides a training set of 4998 images with

the annotations from a set of total 20 keywords. We randomly select (10%, 20%, ..., 60%), respectively,

from the training set, and use them as the labeled images while the rest as the unlabeled ones. We also

have totally 6 experiments for this dataset.

Image Features: Feature selection is an open problem and might have a great impact on the results.

The traditional and usual features are global ones such as color [30][34][33][8] and texture [7]. Recently,

BoF (Bag-of-Features) models such as SIFT (scale-invariant feature transform) [27], spin [23], RIFT

(rotation-invariant feature transform) [24], and so on, have been investigated and proved to owe more

2The groundtruth of the test images of ImageCLEF-VCDT 2008 was released, which allows this process probably to use

some of the test images as the labeled ones.
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powerful image description capabilities. In our work, we use the usual SIFT image descriptors 3, whose

parameter settings are as follows. The dense grid sampling strategy is used, and the grid spacing and

patch size are set to be 8 and 16, respectively. As for the codebook, we set the number of clusters to be

1024 in k-means, and randomly select 8 ∗ 104 features from the whole training feature set to generate

codebook for each data set. Then the ScSPM [42] method is used for coding, in which the spatial block

number on each level of the pyramid is set as [1, 2, 4], the weight for features on each level is set as

[1, 1, 1], the sparsity regularization parameter 0.15, and the smooth regularization for sparse coding is

set as 10−3. Finally, the PCA [21][14] is utilized to reduce the SIFT codes to 200 dimensions, which

produces the image vectors with d = 200.

ℓ1-Minimization Solution: We use the homotopy algorithm which has shown to be with a relatively

good performance and a low time complexity in [40][3]. We use the matlab toolbox of BPDN-homotopy

provided on the webpage http://users.ece.gatech.edu/%7Esasif/homotopy/ (The same is also provided on

http://www.eecs.berkeley.edu/∼yang/software/l1benchmark/). We set the tradeoff parameter λ in Eqn. (7)

and Eqn. (11) to be 0.005 (actually, according to our experiments, the BPDN-homotopy algorithm is

very stable and gives almost the same results when the parameters meet 0 < λ ≤ 0.01). According to

our experiments, an ℓ1-minimization solution with thousands of bases in a 200 dimensional feature space

takes only about 1/20 second with the BPDN-homotopy algorithm implemented by the Matlab 7.1.0.183

(R14) Service Pack 3 running on a computer with the CPU of 16 Quad-Core AMD Opteron(tm) Processor

8382, the Memory of 66176824 kB, and the OS of Debian GNU/Linux 5.0.

Performance Evaluation: The ROC curves, which plot the true positive rate vs the false positive rate

with different decision thresholds, are used for performance evaluation. Two typical measures derived

from the ROC curves are used to evaluate the performances: area under curve (AUC) and equal error

rate (EER). The AUC is the area under the ROC curve, and a larger AUC means a better ROC curve.

The EER denotes the error rate at which the false positive rate is equal to the false negative rate, and

smaller EER means better classification results. Furthermore, for comparison convenience, the average

AUC and EER over all annotation terms of each dataset are calculated for each method.

3We also have some results with a concatenation of the traditional global features: color histogram [34], color moment [33]

and wavelet texture [7]. The comparative results and conclusions are consistent with those over SIFT features which are provided

in the paper, though the average AUC and EER performances of the global features are worse than those of SIFT.
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B. Experimental Results and Discussions

We predefine the number of iterations of the co-training as k = 100, and run for 20 times with

different random selections of the labeled images from the whole image set [9]. Then the ROC curves

and confusion matrices of the proposed Co-KSR at the end (the 100th iteration) of the co-training on two

datasets are given in Figure 4 and Figure 5, respectively, from which we can see that the Co-KSR can

achieve a good performance for each annotation class. These results also show that the AUCs increase,

while the EERs decrease with the enlargement of the ratio of labeled images; the variation of AUCs and

EERs is sharp when the number of labeled images is small, while becomes flattened when the number

of labeled images increases.

To explore the complementarity of two KSRs in opposite directions and the effectiveness of the co-

training, we compute the average AUC and EER of all classes from the ROC curve by iteration of the

co-training, and plot the average AUC and EER in Figure 6 and Figure 7, respectively. Though our

approach switches to the average fusion process at the end of the co-training, in order to better show the

complementary nature of two opposite SR, we also plot the average fusion result for each iteration in

these figures. From these figures, we have the following observations:

(1) The AUC increases while the EER decreases by the number of iterations of the co-training, which

shows that two KSRs in opposite directions are different and independent to some extent according to

the conclusions in [2][4][22];

(2) The Co-KSR improves the AUC evaluation about 6.1% averagely on two datasets over the forward

KSR without the co-training and about 23.6% averagely over the backward KSR, while reduces the EER

evaluation about 3.7% averagely on two datasets over the forward KSR and about 9.8% averagely over

the backward KSR. And even at the 1st iteration before the co-training starts, the simple average fusion

of two KSRs in opposite directions can achieve better performance than either one of them. These results

show that two KSRs in opposite directions contain complementary information to each other for image

annotation;

(3) The backward KSR is relatively weak for image annotation when the number of labeled images is

small. For a large-scale image dataset, the backward KSR with a small number of labeled images can

annotate only a small number of unlabeled images due to the nature of sparsity of SR, which will result

in the weakness of the backward KSR and its fusion with the forward KSR. This problem can be solved

by firstly dividing the whole unlabeled set into several smaller subsets, then performing the backward

KSR on each pair of the whole labeled set and one of unlabeled subsets, and finally combining the results
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of all pairs to achieve the result of the whole unlabeled set;

(4) The performances of the forward and backward KSRs are both improved with the increase of the

number of labeled images, but the backward KSR is improved more than the forward one. The backward

KSR can achieve a performance approximately equal to the forward KSR when the percentage of the

labeled images is larger than 50%.

We compare our Co-KSR with the usual KSR (the single forward kernel sparse represnetation), and

other methods such as TSVM [20], LGC [48] and GFHF [49]. TSVM is a state-of-the-art semi-supervised

model adopting the same RBF kernel as that in our Co-KSR and has also been applied in image

annotation [46]. LGC and GFHF are both state-of-the-art graph-based semi-supervised methods adopting

the Gaussian function and LGC has been used in image classification [19]. In addition, to address the

doubt about whether the SR is appropriate or not for image classification [31], we also compare Co-KSR

with a non-sparse solution with the ℓ2-norm constraint in the RBF kernel space (K-L2), which can be

simply computed via the pseudoinverse of the base matrix [12]. We use cross-validation to set the width

parameter in the RBF or Gaussian functions. Finally, we plot the average AUC and EER for different

semi-supervised methods on two datasets in Figure 8 and Figure 9, respectively. From these figures,

we can see that Co-KSR achieves average AUC and EER performances much better than KSR. For the

ImageCLEF-VCDT dataset, Co-KSR outperforms other state-of-the-art semi-supervised methods such as

TSVM, LGC and GFHF, while for the PASCAL-VOC dataset, the proposed Co-KSR method outperforms

other semi-supervised methods when the ratio of the labeled images is more than 20%, and achieves a

performance approximately equal to the best (GFHF) of other semi-supervised methods when the labeled

images are fewer.

These results also show that the non-sparse solution (K-L2) works better than KSR, which confirms

the conclusion in [31]. But our Co-KSR remedies the performance loss brought by the sparsity, and

achieves better annotation performances than K-L2. The comparison with K-L2 raises the argument that

the fusion of K-L2 in the forward and backward directions also works and may perform better than

that of KSR. So we also run experiments of the co-training with K-L2 in two opposite directions on

the ImageCLEF-VCDT 2008 dataset, and plot the average AUC and EER by iteration of the co-training

in Figure 10 (to save space, the experimental results on the PASCAL-VOC 2010 dataset are omitted).

Figure 10 shows that the AUC decreases while the EER increases by the number of iterations of the

co-training, and even the simple average fusion of two K-L2 in opposite directions performs worse than

the single forward K-L2, which confirms the conclusion in Subsection IV-C that the sparsity is one of the

necessary conditions by which the image representations in opposite directions differ enough from each
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other and the co-training of them can work well. The results also show that the single backward K-L2

performs worse and worse when the number of labeled images increases. Actually, the backward K-L2

to any unlabeled image can be considered as the fusion of image representations of m labeled images

with the unlabeled ones, as shown in Algorithm 2. Thereby, this further confirm that the sparsity plays

an important role in the diversification and fusion of image representations.

In addition, to explore the robustness of our proposed method to noisy image labels, addressing the

real-life scenario where some of labels or keywords are not related with the images they are associated

to, we randomly select [10%, 20%, 30%, 40%, 50%] labels of all labeled images, and negate them, namely

for each annotation class, we set the image not associated if it belongs to the class while associated if it

doesn’t belong to the class. Then we perform experiments on these noisy datasets. We repeat the above

process for 20 times. The curves of the average AUC and EER of various methods vs. the percentage of

noisy labels for the ImageCLEF-VCDT 2008 and PASCAL-VOC 2010 datasets are plotted in Figures 11

and 12, respectively. The experimental results show that on the whole, the proposed Co-KSR achieves

the best performance, while similar to other methods when the noisy percentage is larger than 40%. The

results also show that KSR performs better than K-L2 on the noisy data, contrary to the case without

label noise, which indicate that the sparse solution is more robust than the non-sparse one to image

annotation when the image labels are partially incorrect.

VII. CONCLUSIONS

In this paper, we explored the complementary nature for image annotation between the sparse repre-

sentation in two opposite directions. We firstly designed the forward and backward SR algorithms for

image annotation, respectively. Then we adopted co-training to explore the difference and complemen-

tarity between the forward and backward SRs, and to build a novel semi-supervised learning model

called cooperative sparse representation which effectively combines them to improve image annotation

performance. Finally, the proposed method was implemented in a nonlinear kernel space. Experimental

results and analyses showed that the backward KSR also works on image annotation and can do almost

equally to the forward (usual) KSR when the percentage of the labeled images is larger than 50%; two

KSRs in opposite directions are relatively different and independent classifiers, and the Co-KSR which

combines them by co-training is effective on image annotation with a high performance improvement over

either single one of the forward and backward KSRs without co-training with each other; the proposed

Co-KSR works better than the K-L2 method which is a non-sparse solution; it also outperforms other

state-of-the-art semi-supervised classifiers such as the TSVM, GFHF, and LGC, and is robust to image
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label noise. Thereby, our proposed Co-KSR method can be an effective method for semi-supervised

image annotation, and especially, it is suitable to expand the size of training set for building any image

classification model while a small number of images are provided with labels.
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Fig. 4. The ROC curves (left column, an example of 20 runs) and confusion matrices (right column, mean values ± standard

deviations on 20 runs) of the Co-KSR at the 100th iteration of the co-training on the ImageCLEF-VCDT 2008 dataset (10%,

30%, 50% labeled); The confusion matrices are all shown by class with a 2 × 2 size, where the two elements of the 1st row

are TP (true positive) and FN (false negative) rates, while the two elements of the 2nd row are FP (false positive) and TN (true

negative) rates, respectively. The TP, FN, FP, and TN rates in the confusion matrices are obtained by normalizing the scores

between 0 ∼ 1 and setting the decision threshold as 0.5.
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Fig. 5. The ROC curves (left column, an example of 20 runs) and confusion matrices (right column, mean values ± standard

deviations on 20 runs) of the Co-KSR at the 100th iteration of the co-training on the PASCAL-VOC 2010 dataset (10%, 30%,

50% labeled); The confusion matrices are all shown by class with a 2 × 2 size, where the two elements of the 1st row are

TP (true positive) and FN (false negative) rates, while the two elements of the 2nd row are FP (false positive) and TN (true

negative) rates, respectively. The TP, FN, FP, and TN rates in the confusion matrices are obtained by normalizing the scores

between 0 ∼ 1 and setting the decision threshold as 0.5.

April 15, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, 2012 29

0 10 20 30 40 50 60 70 80 90 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

epoch

A
ve

ra
ge

 A
U

C

 

 

Forw−KSR

Back−KSR

Co−KSR

(a) AUC, 10% labeled

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

epoch

A
ve

ra
ge

 A
U

C

(b) AUC, 30% labeled

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

epoch

A
ve

ra
ge

 A
U

C

(c) AUC, 50% labeled

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

epoch

A
ve

ra
ge

 E
E

R

(d) EER, 10% labeled

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

epoch

A
ve

ra
ge

 E
E

R

(e) EER, 30% labeled

0 10 20 30 40 50 60 70 80 90 100

0.2

0.25

epoch

A
ve

ra
ge

 E
E

R

(f) EER, 50% labeled

Fig. 6. The curve of the average AUC and EER (mean values with standard deviations on 20 runs) changing by the number

of iterations of the KSR co-training on the ImageCLEF-VCDT 2008 dataset (10%, 30%, 50% labeled).
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Fig. 7. The curve of the average AUC and EER (mean values with standard deviations on 20 runs) changing by the number

of iterations of the KSR co-training on the PASCAL-VOC 2010 dataset (10%, 30%, 50% labeled).
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Fig. 8. The curve of the average AUC and EER (mean values with standard deviations on 20 runs) of various methods vs.

the percentage of labeled images on the ImageCLEF-VCDT 2008 dataset, where the LGC and GFHF are both with the affinity

weights defined by the Gaussian function, and the TSVM, K-L2, KSR and Co-KSR are all with the RBF kernel.
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Fig. 9. The curve of the average AUC and EER (mean values with standard deviations on 20 runs) of various methods vs. the

percentage of labeled images on the PASCAL-VOC 2010 dataset, where the LGC and GFHF are both with the affinity weights

defined by the Gaussian function, and the TSVM, K-L2, KSR and Co-KSR are all with the RBF kernel.
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Fig. 10. The curve of the average AUC and EER changing by the number of iterations of the K-L2 co-training on the

ImageCLEF-VCDT 2008 dataset.
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Fig. 11. The curve of the average AUC and EER (mean values with standard deviations on 20 runs) of various methods vs.

the percentage of noisy labels among those of labeled images of the ImageCLEF-VCDT 2008 dataset.
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Fig. 12. The curve of the average AUC and EER (mean values with standard deviations on 20 runs) of various methods vs.

the percentage of noisy labels among those of labeled images of the PASCAL-VOC 2010 dataset.
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