5^e Ecole Recherche Multimodale d'Information - TEchniques & Sciences

28 - 30 Septembre 2010 Presau'île de Giens - Var http://glotin.univ-tln.fr/ERMITES10

ERMITES 2010 Vision et Cognition

Intervenants

Jeanny HERAULT (GIPSA/UJF) Perception Visuelle, faits et modèles

Jean PETITOT (EHESS/X) Modèles neurogéométriques de Vision

Ugo BOSCAIN (CMAP/X) Anthropomorphic image reconstruction via hypoelliptic diffusion

Claude TOUZET (LNIA/UNIV. MED) Modèles cognitifs de l'attention visuelle

Jean-Paul GAUTHIER (LSIS/USTV) Sur les mécanismes mis en œuvre par le système nerveux central

Hervé LE BORGNE (CEA-LIST) Analyse en composantes indépendantes visuelles

Julien MAIRAL (ENS/INRIA WILLOW) Sparse Coding and Dictionary Learning Hervé JEGOU (INRIA/IRISA) Recherche d'image à grande échelle: procédés d'aggrégation & d'indexation

Sébastien PARIS (LSIS/UNIV. MED) Reconnaissance de scène & robotique avec vision embarquée

dédiée à l'analyse des processus de vision, à leurs modélisations et à leurs applications en recherche

LSIS - UMR **CNRS 6168**

d'information

Comités Hervé GLOTIN Président du comité de programme Sébastien PARIS Président du comité d'organisation

Imprimé à La Garde en septembre 2010 à l'université Sud-Toulon Var ISBN 2-9524747-3-7 EAN 9782952474733

Avant-propos

« La réalité se présente à nous sous la forme de phénomènes, de formes, dont nous décelons la présence par leurs discontinuités qualitatives »

Modèles mathématiques de la morphogénèse René Thom, 1974

Pour sa 5e édition, l'école ERMITES 2010 met l'accent sur le couplage entre vision et cognition ("La Cognivision"), et ses applications en recherche d'information vidéo.

Ainsi sont traités des modèles cognitifs bio-inspirés, des modèles de classification automatique, en passant par des représentations en « mots visuels ». En filigrane de ces méthodes: la recherche d'information dans des espaces de très grande dimension.

Cette école regroupe un bon nombre des experts français de renommée internationale. Le comité de programme et d'organisation les remercient chaleureusement de leur investissement pour cette édition qui a atteint son objectif en regroupant la trentaine de participants.

Nous avons cette année filmé les conférences, qui sont disponibles en ligne (voir table des matières), ce qui permet au lecteur de lire les supports tout en écoutant leur auteur, et donc d'en extraire toute l'information.

Nous remercions l'INRIA, l'UMR CNRS LSIS, TPM et l'USTV sans qui cette école n'existerait pas.

Comité de programme : H. Glotin (prés.), S. Paris, J Razik, J.-P. Gauthier

Comité d'organisation : S. Paris (prés.), H. Glotin, J. Razik, A. Zidouni, F. Bénard, M. Chouchane

> Le 28 septembre 2010, A La Gardo, Hervé Glotin & Sébastien Paris

De gauche à droite: J. Petitot, F. Rossi, J. Hérault, J. Mairal, S. Paris, H. Le Borgne, A. Monnin, F. Bouchara, H. Glotin, Y. Wazaefi, O. Caron, C. Thouzet, P. Machart, I. Azarkh, N. Foucault, O. Kleindiest, J. Razik, U. Boscain, R. Delaye, J.-P. Gauthier, C. Maggia, Y. Lacroix, S. Madec, J. Demongeot, H. Jégou, H. Queste *Hors photo:* B. Fertil, L. Boutora, D. Merad

Appendice

Le thème de cette année s'inscrit naturellement dans le projet Dynamiques de l'Information du LSIS (<u>http://www.lsis.org/dyni</u>), et dans son projet ANR CONTINT COGNILEGO (<u>http://cognilego.univ-tln.fr</u>) qui est lancé ce mois-ci avec ses partenaires LNIA et A2IA.

Nous y proposons de développer des modèles cognitifs d'intégration de l'information visuelle pour la transcription robuste de documents. Notre approche repose sur des traitements pyramidaux autoorganisés, à différentes échelles sémantiques comme illustrés ci-dessous. Nous espérons qu'ERMITES 2010 suscitera d'autres projets alliant cognition, vision et recherche d'information.

"PERCEPTION, CATEGORISATION VISUELLE & COGNITION"

Programme

Mardi 28 septembre

- **10h** *Café / réception / visite du site*
- **11h** H. Glotin présentations des journées
- 12h Déjeuner
- **13h30** J. Hérault
- **16h30** Pause café
- **17h** H. Le Borgne
- **20h** *Dîner*

Mercredi 29 septembre

- 8h45 J. Petitot
- 10h Pause café
- **10h20** J. Mairal
- **11h20** H. Jégou
- **12h30** Déjeuner
- **13h45** J. Petitot (suite)
- **15h** Pause café
- 15h30 C. Touzet
- **16h30** U. Boscain
- **18h30** J.-P. Gauthier
- **20h15** *Dîner*
- **21h** C. Touzet (suite)

Jeudi 30 septembre

- 8h30 J. Mairal (suite)
- 9h30 H. Jégou (suite)
- 10h15 Pause café
- 10h30 S. Paris
- 12h30 Déjeuner
- 13h45 Table ronde
- **15h30** Clôture et visite du site.

J. Hérault	1
« Perception visuelle, faits et modèles »	
http://lsis.univ-tln.fr/~glotin/ERMITES 10 HERAULT 1SUR4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_HERAULT_2SUR4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_HERAULT_3SUR4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_HERAULT_4SUR4.mp4	
J. Petitot	57
« Modèles neurogéométriques de vision »	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_PETITOT_1SUR4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_PETITOT_2SUR4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_PETITOT_3SUR4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_PETITOT_4SUR4.mp4	
U. Boscain	159
« Anthropomorphic image reconstruction via hypoelliptic diffusion »	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_BOSCAIN_1SUR2.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_BOSCAIN_2SUR2.mp4	
C. Touzet	
« Modèles cognitifs de l'attention visuelle »	
http://lsis.univ-tln.fr/~glotin/ERMITES 10 TOUZET 1SUR2.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_TOUZET_2SUR2.mp4	
H Le Borgne	203
" Description de scàpes naturalles par composantes indépendantes »	
http://lsis.univ-tln.fr/~glotin/FRMITES_10_LEBORGNE_1SUR2.mn4	
http://lsis.univ-tln.fr/~glotin/ERMITES 10 LEBORGNE 2SUR2.mp4	
I Mairal	235
J. Mail al.	
« Sparse could and dictionary learning for image analysis » http://loid.upix.thp.fr/e.glotin/EDMITES_10_MAIDAL_1SUD4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_MAIRAL_150R4.inp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_MAIRAL_250R4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES 10 MAIRAL 4SUR4.mp4	
S Davie	221
« Reconnaissance de scenes & robotique avec vision embarquee »	
http://lsis.univ-un.it/~gloun/ERMITES_10_PARIS_ISUR2.mp4	
H. Jégou	359
« Recherche d'image à grande échelle: procédés d'agrégation & d'indexation »	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_JEGOU_1SUR4.mp4	
http://lsis.univ-tln.fr/~glotin/ERMITES_10_JEGOU_2SUR4.mp4	
http://lsis.univ-tin.tr/~glotin/ERMITES_10_JEGOU_3SUR4.mp4	
$\frac{1}{100} \frac{1}{100} \frac{1}$	
JP. Gauthier	401
« Sur les mécanismes optimaux mis en œuvre par le système nerveux central »	
http://lsis.univ-tln.fr/~glotin/ERMITES 10 GAUTHIER 1SUR2.mp4	
http://Isis.univ-tln.tr/~glotin/ERMITES_10_GAUTHIER_2SUR2.mp4	

Jeanny HERAULT

GIPSA Lab. / UJF

http://www.gipsa-lab.inpg.fr/page_pro.php?vid=76

"Perception Visuelle, Faits et Modèles"

L'exposé se déroule selon six grandes parties :

1) Illusions visuelles :

Classées par catégories, elles nous permettront, par les questions qu'elles suscitent, d'évoquer les principes de traitement du système visuel. Nous verrons que celui-ci s'est adapté au monde 3D où nous vivons et aux variations des conditions dans lesquelles les objets sont vus.

2) La rétine :

Point d'entrée du système visuel, elle est le siège de prétraitements (filtrages linéaires, non-linéarités adaptatives) qui préparent le signal au mieux pour son analyse et son interprétation par les différentes couches du cortex visuel.

3) Les circuits neuromimétiques :

Le modèle électrique de la rétine a conduit à un ensemble de circuits dits "neuromimétiques" dont nous donnons un exemple pour l'estimation du mouvement en temps réel.

4) Le codage des couleurs :

Ah, si nos ingénieurs avaient connu le traitement rétinien des couleurs, on aurait actuellement une TV de bien meilleure qualité! Nous verrons que c'est le cortex visuel qui décode la couleur et non pas la rétine, et que les principes qu'elle utilise sont économiques et efficaces, surtout de l'échantillonnage aléatoire des photorécepteurs.

5) Les non-linéarités :

Une analyse en détail des non-linéarités et de l'adaptation dans la rétine nous permet de comprendre certaines des illusions visuelles du début et donnent des pistes intéressantes pour le traitement des images (égalisation des niveaux d'intensité, des contrastes et constance des couleurs).

6) Le traitement cortical :

L'analyse des spectres 2D locaux des images ou des scènes par le cortex visuel primaire nous permet d'aborder les aspects de catégorisation, de saillance et d'estimation de la perspective. Quant à l'analyse des aires supérieures (en particulier V4), elle nous conduit aux propriétés d'invariance par rapport à l'échelle, aux rotations des images et aux effets de perspective.

Référence :

"VISION: IMAGES, SIGNALS AND NEURAL NETWORKS Models of Neural Processing in Visual Perception" J. Herault, Ed. Worldscibooks 2010, 308p.

ERMITES Gien, September 2010

VISUAL PERCEPTION

Facts and Models

CONTENTS

- I- VISUAL ILLUSIONS
- **II- THE RETINA**
- **III- NEUROMORPHIC CIRCUITS**
- **IV- COLOR CODING**
- V- NON-LINEARITY
- VI- CORTICAL PROCESSING

VISUAL LLUSIONSImage: Straight of the straig

VISUAL ILLUSIONS

I- SHADOWS AND 3D WORLD

II- ADAPTATION TO SPATIAL CONTEXT Intensity, contrast, color, shape...

III- ADAPTATION TO TEMPORAL CONTEXT

VISUAL ILLUSIONS

I- SHADOWS AND 3D WORLD

II- ADAPTATION TO SPATIAL CONTEXT

III- ADAPTATION TO TEMPORAL CONTEXT Orientation, spatial frequency, color, motion...

NEUROMORPHIC CIRCUITS & MOTION ESTIMATION

- I- MODEL OF 1-D MOTION
- **II- WHICH CIRCUIT FOR MOTION ?**
- **III- VELOCITY ESTIMATION**
- **IV-EXAMPLES**

I- PHOTORECEPTORS' NON-LINEARITY

II- NON-LINEARITY IN IPL

III- NON-LINEARITY AND COLOUR

CORTICAL ANALYSIS OF IMAGES

I- IMAGE SPECTRA

II- CORTICAL ANALYSIS

III- ADAPTATION TO TEMPORAL CONTEXT

Jean PETITOT

EHESS / X

http://www.crea.polytechnique.fr/JeanPetitot/home.html

"Modèles Neurogéométriques de Vision"

On proposera un modèle géométrique de l'architecture fonctionnelle du cortex visuel primaire (aire V1) et on explicitera les algorithmes géométriques que cette dernière implémente, autrement dit la "neurogéométrie" immanente à la perception visuelle.

1) Le filtrage du signal optique par les neurones visuels s'apparente à une analyse en ondelettes. La structure de contact de l'espace des 1-jets des courbes du plan (ici le plan rétinien) se trouve implémentée par l'architecture fonctionnelle.

2) L'intégration des contours à partir de données sensorielles éventuellement très lacunaires sont modélisables en termes de la géométrie sous-riemannienne associée à cette structure de contact.

Référence :

J. Petitot, « Neurogéomètrie de la vision », Ellipse - Les Editions de l'Ecole Polytechnique, 420 pages, 2008.

ERMITES 2010: Vision et Cognition 28-30 septembre 2010

Modèles neurogéométriques de vision

Jean Petitot

CAMS, EHESS & CREA, Ecole Polytechnique, Paris

Introduction What I call <u>neurogeometry</u> concerns the neural implementation of geometric structures of visual perception. It concerns perceptive geometry "from within" (in the sense of Gromov) and not 3D Euclidean geometry of the outside world . The general problem is to understand how the visual system can be a <u>neural geometric engine</u>.

1

- Contact, symplectic and sub-Riemannian geometry arise naturally in modeling V1 functional architecture.
- Sub-Riemannian geometry provides the simplest model of the horizontal corticocortical connections in V1.

In relation with wavelet analysis this leads naturally to noncommutative harmonic analysis on Heisenberg type groups.

Limitations

We focus on V1, but there are of course many top-down feedbacks from other areas to V1.

 Neural implementation varies with species (rat, ferret, tree shrew, cat, macaque, man, etc.). The same functional architecture can be implemented in different ways.

- Stephen van Hooser on "Similarity and diversity" of V1 in mammals (comparative study).
- The gross laminar interconnections and the major functional responses are nearly invariant: 6 layers, LGN projecting mainly on the granular 4th layer.
- Three principal classes of LGN cells: parvocellular (P), magnocellular (M), koniocellular (K), etc.

- But the fine laminar structures are quite different.
- Tree shrew (Tupaya), Cat, Macaque have orientation maps with orientation hypercolumns and a functional "horizontal" architecture connecting neurons of similar orientation.
- Rat and Gray squirrel have not.

Figure. Orientation simple cells (red) are absent in macaque 4B and tree shrew layer 4.

[[Direction selectivity dominates in the cat but is only common in specific layers of macaque and squirrel.

End-stopped VS lengthsumming cells : they decrease VS increase their responses as bars or gratings length increases.]]

- Another limitation. Neural coding is a statistical population coding and, for each elementary computation, a lot of neurons are involved.
- We will not take into account explicitly this redundancy which leads to stochastic models.

A typical example : Kanizsa illusory contours

- A typical example of the problems of neurogeometry is given by well known Gestalt phenomena such as Kanizsa illusory contours.
- The visual system (V1 with some feedback from V2) constructs very long range and crisp virtual contours.

- Kanizsa subjective contours manifest a deep neurophysiological phenomenon.
- Here is a result of Catherine Tallon-Baudry in « Oscillatory gamma activity in humans and its role in object representation » (*Trends in Cognitive Science*, 3, 4, 1999).
- Subjects are presented with coherent stimuli (illusory and real triangles) « leading to a coherent percept through a bottom-up feature binding process ».

« Time–frequency power of the EEG at electrode Cz (overall average of 8 subjects), in response to the illusory triangle (top) and to the no-triangle stimulus (bottom ».

- « Two successive bursts of oscillatory activities were observed.
 - A first burst at about 100 ms and 40 Hz. It showed no difference between stimulus types.
 - A second burst around 280 ms and 30-60 Hz.
 It is most prominent in response to coherent stimuli. »

- In mammals (especially higher mammals with frontal eyes), due to the optic chiasm, each visual hemifield projects onto the contralateral hemisphere.
- The fibers from nasal hemiretinae cross the optic chiasm, while the fibers from temporal hemiretinae remain on the ipsilateral side.

- True RF are far more complex. They are adaped to the processing of <u>natural</u> <u>images</u> (and not bars and gratings).
- Joseph Atick, J-P Nadal, have shown that Laplacian RPs can result from "efficiency of information representation".
 - An efficient coding must reduce redundancy and maximize the mutual information between visual input and neural response.
 - See Hervé Le Borgne's talk.

The statistic of natural images is very particular because there exist strong correlations between nearby RF.

- Yves Frégnac (UNIC) : 4 statistics. Drifting gratings, dense noise, natural images with eye movements, gratings with EM.
- The variability of spikes decreases with complexity and their temporal precision increases.

In the linear approximation (convolution
$$T(I) = I * \varphi$$
 with a RP $\varphi(x)$), the first thing is to decorrelate the self-correlation of the signal $R(z)$ defined by $R(x - y) = \langle I(x), I(y) \rangle$.
Fields law (scale invariance of R) : the power spectrum is
 $\widehat{R}(\omega) = \frac{1}{|\omega|^2}$ If $\omega = \lambda/\alpha$
 $R(\alpha x) = \int \frac{e^{i\omega \alpha x}}{|\omega|^2} d\omega = \int \frac{\alpha^2 e^{i\lambda x}}{|\lambda|^2} \frac{d\lambda}{\alpha} = \alpha R(x)$

Decorrelation = whitening

$$\langle T(I)(x), T(I)(y) \rangle = \delta(x - y)$$

 $|\widehat{T(I)}(\omega)|^2 = 1$
Covariance matrix, with $\varphi'(x) = \varphi(-x)$
 $T(R) = \varphi * R * \varphi'$
To get δ , we need
 $\widehat{T(R)}(\omega) = \widehat{\varphi}(\omega)\widehat{R}(\omega)\overline{\widehat{\varphi}}(\omega) = 1$

$$\begin{split} |\widehat{\varphi}(\omega)|^2 &= \frac{1}{\widehat{R}(\omega)} \qquad \widehat{R}(\omega) = \frac{1}{|\omega|^2} \qquad |\widehat{\varphi}(\omega)| = |\omega| \\ \\ \text{This method is not adapted to noise and enhance it at high frequencies where it is already dominant.} \\ \text{We need a smoothing, hence} \\ |\widehat{\varphi}(\omega)|^2 &= \frac{\widehat{R}(\omega) + N^2}{\widehat{R}(\omega)^2} \\ \\ \text{Decorrelation } + \text{ smoothing leads to Laplacian RPs.} \end{split}$$

Complex cells and their non-linearities (Jon Touryan, *Neuron*, 45, 2005, "Spatial Structure of Complex Cell Receptive Fields Measured with Natural Images").

 V1 of cat. Trains of 24 000 natural images (different enough and normalized), every 40ms. Spike-triggered stimulus ensemble.

Correlation matrix

$$C_{m,n} = \frac{1}{N} \sum_{i=1}^{i=N} S_m(i) S_n(i)$$

where $S_n(i)$ is the luminance of the *n*-th pixel in the stimulus preceding the *i*-th spike (N = # spikes).

It is applied to the Atick's transform

$$S_w = SU \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\sqrt{\lambda_n}} \end{pmatrix}$$

The significant eigenvectors are retrieved from

$$V = V_w^T \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & 0\\ & \ddots & \\ 0 & & \frac{1}{\sqrt{\lambda_n}} \end{pmatrix} U^{-1}$$

In general, there are two significant eigenvectors, which are Gabor RFs with the same spatial frequency and a difference of phase ~ $\pi/2$.

The hypercolumns associate retinotopically to each position a of the retina R a full exemplar P_a of the space Pof orientations p at a.

So, this part of the functional architecture implements the fibration $\pi : R \times P \rightarrow R$ with base *R*, fiber *P*, and total space $V = R \times P$.

- Hypercolumns are geometrically organized in <u>2D-pinwheels</u>.
- The cortical layer is reticulated by a network of singular points which are the centers of the pinwheels.
- Locally, around these singular points all the orientations are represented by the rays of a "wheel" and the local wheels are glued together into a global structure.

- The method (Bonhöffer & Grinvald, ~ 1990) of *in vivo optical imaging* based on activity-dependent intrinsic signals allows to acquire images of the activity of the superficial cortical layers.
- Gratings with high contrast are presented many times (20-80) with e.g. a width of 6.25° for the dark strips and of 1.25° for the light ones, a velocity of 22.5°/s, different (8) orientations.

- The concentration of deoxy-hemoglobine increases when neurons are activated. The absorption spectrum of deoxy-hemoglobin is maximal for wave lengths about 600 nm.
- The change is only about 0.2% and the recorded images must therefore be analyzed very carefully.

One does the summation of the images of V1 's activity for the different gratings and constructs differential maps (differences between orthogonal gratings).

- The low frequency noise is eliminated.
- The maps are normalized (by dividing the deviation relative to the mean value at each pixel by the global mean deviation).

- Injection of calcium indicator dye (Oregon Green BAPTA-1 acetoxylmethyl esther) which labels few thousands of neurons in a 300-600µ region.
- Two-photon calcium imaging measures simultaneously calcium signals evoked by visual stimuli on hundreds of such neurons at different depths (from 130 to 290µ by 20µ steps).

One finds pinwheels with the <u>same</u> orientation wheel.

 « This demonstrates the columnar structure of the orientation map at a very fine spatial scale ».

Cortico-cortical connections are slow $(\approx 0.2 \text{ m/s})$ and weak.

They connect neurons of almost similar orientation in neighboring hypercolumns.

This means that the system is able to know, for b near a, if the orientation q at b is the same as the orientation p at a.

The next slide shows how a marker (biocytin) injected locally in a zone of specific orientation (green-blue) diffuses via horizontal cortico-cortical connections.

 The key fact is that the long range diffusion is highly anisotropic and restricted to zones of the same orientation (the same color) as the initial one.

- cortico-cortical Moreover connections connect neurons coding pairs (a, p) and (b, p) such that p is approximatively the orientation of the axis ab (William Bosking). of long-range horizontal The system **«** connections can be summarized as preferentially linking neurons with co-oriented, co-axially aligned receptive fields ».
 - So, the well known Gestalt law of "good continuation" is neurally implemented.

• If *C* is curve in *R* (a contour), it can be lifted to *V*. The lifting Γ is the map (1-jet)

 $j: C \rightarrow V = R \times P$

wich associates to every point *a* of *C* the pair

 (a, p_a) where p_a is the tangent of *C* at *a*.

- This <u>Legendrian lift</u> Γ represents *C* as the enveloppe of its tangents (projective duality).
- In terms of local coordinates (x, y, p) in *V*, the equation of Γ writes (x, y, p) = (x, y, y').

- The functional interest of jet spaces is that they can be implemented by "point processors" (Koenderink) such as neurons.
- But then a functional architecture is needed.
- Functional architectures of point processors can compute features of differential geometry.

- If $\Gamma = (a, p) = (x, y(x), p(x))$ is a curve in *V*, the projection a = (x, y(x)) of Γ is a curve *C* in *R*. But Γ is the lifting of *C* iff p(x) = y'(x).
- This condition is called a Frobenius integrability condition. It says that to be a coherent curve in *V*, Γ must be an integral curve of the contact structure of the fibration π .

Frobenius condition and Association field

- Frobenius integrability condition corresponds to the psychophysical experiments on the <u>association field</u> (David Field, Anthony Hayes and Robert Hess).
- They explain experiments on good continuation : pop out of a global curve against a background of randomly distributed distractors

• Let (a_i, p_i) be a set of segments embedded in a background of randomly distributed distractors. The segments generate a perceptively salient curve (pop-out) iff the p_i are tangent to the curve *C* optimally interpolating between the a_i .

This is a discretized version of the integrability condition.
The integrability induces a binding of the local elements. The activities of the neurons detecting them are synchronized and the synchronization produces the pop

out.

t = (x, y, p; l, y', p')

is a tangent vector to V at the point

(x, y, p), then *t* is in the <u>kernel</u> of the 1-form

 $\boldsymbol{\omega} = dy - pdx$

 $(\omega = 0 \text{ means } p = dy / dx).$

To compute the value of a 1-form ω on a tangent vector $t = (\xi, \eta, \pi)$ at (x, y, p), one applies the rules

$$dx(t) = \xi, dy(t) = \eta, dp(t) = \pi.$$

So the kernel of the 1-form ω is the field of the planes (called the contact planes)

$$p - p\xi = 0.$$

 $X_1 = \partial_x + p\partial_y = (\xi = 1, \eta = p, \pi = 0)$, and $X_2 = \partial_p = (\xi = 0, \eta = 0, \pi = 1)$ are evident generators. Moreover, in a Legendrian lift Γ , the vertical component p' of a tangent vector is the curvature of the curve C in the base space R:

$$p = y' \implies p' = y''$$

- The field of the contact planes has many integral curves : all the Legendrian lifts. But it has <u>no</u> integral surfaces.
- This is due to the fact that the contact planes "rotate" too fast to be the tangent planes of a surface.

Contact structure and Heisenberg group

 The contact structure on V is left-invariant for a group structure which is isomorphic to the Heisenberg group :

$$(x, y, p).(x', y', p') = (x + x', y + y' + px', p + p')$$

• If $t = (\xi, \eta, \pi)$ are the tangent vectors of $\mathfrak{V} = T_0 V$, the Lie algebra of *V* has the Lie bracket

$$[t, t'] = [(\xi, \eta, \pi), (\xi', \eta', \pi')] = (0, \xi' \pi - \xi \pi', 0)$$

In matrix terms,
$$v = (x, y, p)$$
 and $t = (\xi, \eta, \pi)$

$$\begin{pmatrix} 1 & p & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & \pi & \eta \\ 0 & 0 & \xi \\ 0 & 0 & 0 \end{pmatrix}$$
Inner automorphism :

$$A_v: \quad v' \qquad \mapsto \qquad v.v'.v^{-1} \\ (x', y', p') \qquad \mapsto \qquad (x', y' + px' - p'x, p')$$

For the <u>coadjoint representation</u>, take the basis {dx, dy, dp} for the 1-forms of 𝔅^{*} :

θ = αdx + βdy + δdp = (α, β, δ)

We get (Ad^{*}_v(θ), t) = ⟨θ, Ad_{-v}(t)⟩
Ad^{*}_v(θ) = (α - βp, β, δ + βx)

Orbits :

If β ≠ 0, planes β = cst.
If β = 0, every point of the (α, 0, δ) plane.

If \mathcal{K} is the contact structure on V and if one considers only curves Γ in V which are integral curves of \mathcal{K} , then metrics $g_{\mathcal{K}}$ defined only on the planes of \mathcal{K} are called sub-Riemannian metrics.

The geodesics are the projections of the trajectories associated to the Hamiltonian $H(x, y, p, \xi, \eta, \pi) = \frac{1}{2} \left[(\xi + p\eta)^2 + \pi^2 \right]$ which corresponds to the metric making $X_1 = (1, p, 0), X_2 = (0, 0, 1)$ $\begin{cases} X_1 = \frac{\partial}{\partial x} + p \frac{\partial}{\partial y} \\ X_2 = \frac{\partial}{\partial p} \end{cases}$ an orthonormal basis.

Hamilton equations are

$$\begin{cases} \dot{x}(s) = \frac{\partial H}{\partial \xi} = \xi + p\eta \\ \dot{y}(s) = \frac{\partial H}{\partial \eta} = p \left(\xi + p\eta\right) \\ \dot{p}(s) = \frac{\partial H}{\partial \pi} = \pi \\ \dot{\xi}(s) = -\frac{\partial H}{\partial x} = 0 \\ \dot{\eta}(s) = -\frac{\partial H}{\partial y} = 0 \\ \dot{\pi}(s) = -\frac{\partial H}{\partial p} = -\eta \left(\xi + p\eta\right) \end{cases}$$

The moments ξ and η are constant because *H* is independent of *x* and *y*.

The integration of the (x, p) part is the easiest (τ is the end time and x_1, y_1, p_1 the end points of the geodesic starting at 0). It yields : $\begin{cases} x(s) = \frac{\sin(\frac{s}{2}\eta_0)}{\sin(\frac{\tau}{2}\eta_0)} \left(\cos\left(\frac{(\tau-s)}{2}\eta_0\right) x_1 - \sin\left(\frac{(\tau-s)}{2}\eta_0\right) p_1 \right) \\ p(s) = \frac{\sin(\frac{s}{2}\eta_0)}{\sin(\frac{\tau}{2}\eta_0)} \left(\sin\left(\frac{(\tau-s)}{2}\eta_0\right) x_1 + \cos\left(\frac{(\tau-s)}{2}\eta_0\right) p_1 \right) \end{cases}$

51

• The integration of y is much more
complex. It yields

$$y(s) - y_0 = \frac{1}{8(\cos(\eta_0\tau) - 1)} [-2\eta_0 s (x_1^2 + p_1^2) - 4x_1 p_1 \cos(\eta_0 (s - \tau)) + 2(x_1^2 - p_1^2) \sin(\eta_0 (s - \tau)) + 2x_1 p_1 \cos(\eta_0 (2s - \tau)) - (x_1^2 - p_1^2) \sin(\eta_0 (2s - \tau)) + 2x_1 p_1 \cos(\eta_0 \tau) + (x_1^2 - p_1^2) \sin(\eta_0 \tau) + 2(x_1^2 + p_1^2) \sin(\eta_0 s)]$$

The key point is that we have, with

$$z = (x, p)$$
 and the new variable
 $\varphi = \frac{\eta_0 \tau}{2};$
 $4\left(y_1 - y_0 - \frac{1}{2}x_1p_1\right) = \mu(\varphi) ||z_1||^2$
with
 $\mu(\varphi) = \frac{\varphi}{\sin^2(\varphi)} - \cot(\varphi)$

Projections of geodesics on the
$$(x, p)$$

plane are circles
$$x^{2} + p^{2} - x\left(x_{1} + p_{1}\cot\left(\frac{\eta_{0}\tau}{2}\right)\right) - p\left(p_{1} - x_{1}\cot\left(\frac{\eta_{0}\tau}{2}\right)\right) = 0$$
with center
$$x_{c} = \frac{1}{2}\left(x_{1} + p_{1}\cot\left(\frac{\eta_{0}\tau}{2}\right)\right), y_{c} = \frac{1}{2}\left(p_{1} - x_{1}\cot\left(\frac{\eta_{0}\tau}{2}\right)\right)$$

$$\begin{aligned} x_1 &= \frac{|\sin(\varphi)|}{\varphi} \cos\left(\theta\right) \\ p_1 &= \frac{|\sin(\varphi)|}{\varphi} \sin\left(\theta\right) \\ y_1 &= \frac{\varphi + 2\sin^2\left(\varphi\right)\cos\left(\theta\right)\sin\left(\theta\right) - \cos\left(\varphi\right)\sin\left(\varphi\right)}{4\varphi^2} \end{aligned}$$

Unitary irreducible representations

- Since the sub-Riemannian geometry is invariant under the group structure of *V*, it is essential to know the unitary irreducible representations (unirreps) of this group.
- We can adapt a celebrated result for the Heisenberg group known as the Stone - von Neumann theorem.

Kirillov : they correspond to the orbits of the
coadjoint representation of *V*.
$$Ad_{v}^{*}(\theta) = (\alpha - \beta p, \beta, \delta + \beta x)$$
Planes $\beta = \operatorname{cst} = \lambda$ for $\beta \neq 0$ correspond to
 $\pi_{\lambda}(x, y, p) u(s) = e^{i\lambda(y+xs)}u(s+p)$, with $\lambda \neq 0$ Points of the $(\alpha = \mu, 0, \delta = v)$ plane for $\beta = \lambda = 0$
correspond to
 $\pi_{\mu,\nu}(x, y, p) = e^{i(\mu x + \nu p)}$

Contact structure and Euclidean group

Alessandro Sarti and Giovanna Citti emphasized the fact that it is more natural to work in the fibration $\pi: V = R \times P \rightarrow R$ with $P = \mathbb{S}^1$ and with the contact form

 $\omega = -\sin(\theta)dx + \cos(\theta)dy$

which is $\cos(\theta)(dy - pdx)$

(No privileged *x*-axis)

In the 3D space $V = \mathbb{R}^2 \times \mathbb{S}^1$ we have the contact structure defined by the 1-form K $\omega = -\sin(\theta)dx + \cos(\theta) dy$ The (non holonomic) basis for the contact planes is $X_1 = \cos(\theta) \partial_x + \sin(\theta) \partial_y$ $X_2 = \partial_\theta$

The Lie bracket is

$$[X_1, X_2] = X_3 = -\sin(\theta)\partial_x + \cos(\theta)\partial_y$$

We want to add *curvature* K and work in the 4D space

$$W = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{R}$$

Now, we have a Pfaff system constituted of two 1-forms: ω and

$$\tau = d\theta - Kds$$

If we parametrize the curves in the base space (x, y) using the arc length s, the curvature is

$$K = \frac{d\theta}{ds}$$

In cartesian coordinates, for a curve with (local) equation y = f(x), the curvature is

$$K = \frac{f''(x)}{\left(1 + f'(x)^2\right)^{3/2}}$$

The link between the two formulas is easy:

$$x'(s) = \cos(\theta)$$

$$y'(s) = \sin(\theta) = f'(x) x'(s)$$

$$y''(s) = f''(x) x'(s)^{2} + f'(x) x''(s)$$

$$f''(x) = \frac{y''(s) - f'(x) x''(s)}{x'(s)^2}$$
$$= \frac{\cos(\theta) \theta'(s) + \tan(\theta) \sin(\theta) \theta'(s)}{\cos(\theta)^2}$$
$$= K\left(\frac{1}{\cos(\theta)} + \frac{\sin(\theta)^2}{\cos(\theta)^3}\right) = \frac{K}{\cos(\theta)^3}$$

But

$$1 + f'(x)^{2} = 1 + \tan(\theta)^{2} = \frac{1}{\cos(\theta)^{2}}$$
and therefore

$$K = f''(x)\cos(\theta)^{3} = \frac{f''(x)}{\left(1 + f'(x)^{2}\right)^{3/2}}$$

To express the second 1-form
$$\tau$$
, we write
 $dx = \cos(\theta) ds$
 $dy = \sin(\theta) ds$
 $ds = \cos(\theta) dx + \sin(\theta) dy = (\cos(\theta)^2 + \sin(\theta)^2) ds$
and therefore
 $\tau = d\theta - K ds$
 $\tau = d\theta - K (\cos(\theta) dx + \sin(\theta) dy)$

The kernel of
$$\tau$$
 is generated by the 3 tangent vectors

$$\begin{split} X_1^K &= \cos\left(\theta\right)\partial_x + \sin(\theta)\partial_y + K\partial_\theta = X_1 + KX_2 \\ X_3 &= -\sin(\theta)\partial_x + \cos\left(\theta\right)\partial_y \\ X_4^K &= \partial_K \end{split}$$
while the kernel of ω extended to W is generated by X_1, X_2 and X_4^K .

In the 4D space W, the tangent vector $X_1 + KX_2$ is helicoidally unfolded along the K-axis. The distribution of planes is now Span $\{X_1^K, X_4^K\}$. It generates the whole Lie algebra since

$$\begin{bmatrix} X_1^K, X_4^K \end{bmatrix} = -X_2 = -\partial_\theta$$
$$\begin{bmatrix} \begin{bmatrix} X_1^K, X_4^K \end{bmatrix}, X_1^K \end{bmatrix} = X_3 = -\sin(\theta)\partial_x + \cos(\theta)\partial_y$$

Sub-Riemannian geometry of the Euclidean group E(2)

For the non nilpotent Euclidean group,
 Andrei Agrachev and his group at the
 SISSA (Yuri Sachkov, Ugo Boscain, Igor
 Moiseev) solved the problem of SR
 geodesics and Sachkov compared it with
 the Mumford's elastica model.

One works in the fibration $V = \mathbb{R}^2 \times \mathbb{S}^1$ where the Legendrian lifts are solutions of the control system :

ſ	$\dot{x} = u_1 \cos\left(\theta\right)$
{	$\dot{y} = u_1 \sin\left(\theta\right)$
l	$\dot{\theta} = u_2$

Let

$$p = (p_x, p_y, p_\theta) \in T_q^* V$$

Scale-space and symplectic structures

- The contact structure of V is defined as the kernel field of the 1-form ω .
- But this field is only defined up to a scale factor $s = e^{\sigma}$, ω and $s\omega$ having the same kernels.
- It is therefore natural to <u>enlarge</u> the 3 dimensional contact space $V = \mathbb{R}^2 \times \mathbb{S}^1$ to the 4 dimensional space $G = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{R}$ with coordinates (*x*, *y*, θ , σ).

 $d\omega \text{ is the symplectic 2-form on } G$ $d\omega = (e^{-\sigma} \cos(\theta) dx + e^{-\sigma} \sin(\theta) dy) \wedge d\theta + (-e^{-\sigma} \sin(\theta) dx + e^{-\sigma} \cos(\theta) dy) \wedge d\sigma.$ deduced via left translations from the canonical symplectic 2-form at 0 $dx \wedge d\theta + dy \wedge d\sigma.$ $dx \wedge d\theta + dy \wedge d\sigma.$ $dx \wedge d\theta + dy \wedge d\sigma.$ $dx \wedge d\theta + dy \wedge d\sigma.$

and
$$d\omega = v \wedge d\theta + \omega \wedge d\sigma$$

• $d\omega$ can be writen using an antisymmetric
matrix B
 $d\omega(X, X') = \langle BX, X' \rangle$
 $B = e^{-\sigma} \begin{pmatrix} 0 & 0 & -\cos(\theta) & \sin(\theta) \\ 0 & 0 & -\sin(\theta) & -\cos(\theta) \\ \cos(\theta) & \sin(\theta) & 0 & 0 \\ -\sin(\theta) & \cos(\theta) & 0 & 0 \end{pmatrix}$
• $-B^2 = BB^*$ is positive definite $-B^2 = e^{-2\sigma}I$
and we can therefore consider

Another (logarithmic) model for the scale-
space (zoom and blowing up). See Citti,
Sarti, Petitot, *J. of Phys. Paris*, 103, 1-2,
2009.
We take
$$\omega = \sigma^{-1} (-\sin(\theta)dx + \cos(\theta)dy)$$
Then
$$d\omega \quad = \mid \sigma^{-1} (\cos(\theta)dx + \sin(\theta)dy) \wedge d\theta$$
$$+ \sigma^{-2} (-\sin(\theta)dx + \cos(\theta)dy) \wedge d\sigma$$
$$= \sigma^{-1}\omega_1 \wedge \omega_2 + \sigma^{-2}\omega_3 \wedge \omega_4$$

Minimal surfaces in V1

- It seems that illusory contours are in fact boundaries of illusory <u>minimal surfaces</u> in V1.
- The theory of surfaces S in a contact manifold endowed with a sub-Riemannian geometry is rather difficult.
- There are in general "characteristic" (generically isolated) points where S is tangent to the contact plane and where the normal vector relative to \mathcal{K} is not defined.
- See Scott Pauls : « Minimal surfaces in the Heisenberg group ».

Coherent states and harmonic analysis on Lie groups

- The natural context of signal analysis in natural vision is therefore that of *coherent states*. We have
 - An Hilbert space $\mathcal{H} = L^2 (\mathbb{R}^2)$
 - A (locally compact) Lie group *G* acting on \mathcal{H} via an irreducible unitary representation π .
 - A well localized « mother » wavelet $\varphi_0 \in \mathcal{H}$

The Gabor transform corresponds to the analysis :

$$G_f(a,\omega) = \int_{\mathbb{R}} f(x)e^{-i\omega(x-a)}g(x-a)^* dx \in L^2(\mathbb{R}^2)$$

with the synthesis :

$$f(x) = \frac{1}{2\pi \|g\|^2} \int_{\mathbb{R}} G_f(a, \omega) e^{i\omega(x-a)} g(x-a) \, dad\omega.$$

The coherent states are :

$$g_{a,\omega}(x) = e^{i\omega(x-a)}g(x-a)$$

Harmonic analysis and symmetry axis

We can apply this to the mother wavelet

$$\varphi_{(0,\sigma)}(x,y) = \frac{1}{e^{2\sigma}} e^{\frac{-(x^2+y^2)}{e^{2\sigma}}} e^{\frac{2iy}{e^{\sigma}}}$$

and look at the associatated coherent state.

• Let *C* be a closed boundary in the retinal plane \mathbb{R}^2 and a = (x, y) a point inside *C*.

<u>Citti-Sarti</u> : If we look at the <u>maximal</u> responses of the receptive profiles centered at *a*, and if *c* is the nearest point of *C* relative to *a*, then

d((x,y),c) = 1/√2 e[¯]

and *θ* is the direction of *C* at *c*.

We can therefore lift ℝ² to a surface Σ in G Σ = {(x, y, θ(x, y), σ(x, y))}.

Non-commutative harmonic analysis

- To a geometry with geodesics are associated diffusion / propagation processes.
- Classical heat kernel :

$$\frac{\partial f(\mathbf{x},s)}{\partial s} = \Delta f(\mathbf{x},s)$$

• Elementary solution in \mathbb{R}^3 :

$$\Delta f(\mathbf{x}) = \delta(\mathbf{x}) \qquad -\frac{1}{4\pi \|\mathbf{x}\|}$$

Hamilton equations :

$$\dot{x}_j(s) = \frac{\partial H}{\partial \xi_j} = 2\xi_j \text{ et } \dot{\xi}_j(s) = -\frac{\partial H}{\partial x_j} = 0.$$

Solutions : $\xi_j = c_j$ $x_j(s) = 2c_j s + d_j$
If $\mathbf{x}(0) = 0$ $\mathbf{x}(\tau) = \overline{\mathbf{x}}$ then
 $x_j(s) = \frac{\overline{x}_j}{\tau} s, \xi_j(s) = \frac{\overline{x}_j}{2\tau}.$

Lagrangian (Legendre transform of *H*):

$$\sum_{j=1}^{j=3} \xi_j \dot{x}_j - H(x_j, \xi_j) \qquad \sum_{j=1}^{j=3} (\xi_j \dot{x}_j - \xi_j^2)$$

$$L = \sum_{j=1}^{j=3} \left(\frac{\overline{x}_j}{2\tau} \frac{\overline{x}_j}{\tau} - \left(\frac{\overline{x}_j}{2\tau} \right)^2 \right) = \frac{\|\overline{\mathbf{x}}\|^2}{4\tau^2}$$
Action integral along a geodesic :

$$S = \int_0^{\tau} L ds = \int_0^{\tau} \frac{\|\overline{\mathbf{x}}\|^2}{4\tau^2} ds = \frac{\|\overline{\mathbf{x}}\|^2}{4\tau}$$

S is a solution of the Hamilton-Jacobi equation :

$$\frac{\partial S}{\partial \tau} + H\left(\mathbf{x}, \nabla S\right) = 0 \qquad \frac{\partial S}{\partial \tau} = - \left\|\nabla S\right\|^{2}$$

Fundamental solution (heat kernel) :

$$P(\mathbf{x},s) = \frac{1}{\left(2\sqrt{\pi s}\right)^3} e^{-\frac{\|\overline{\mathbf{x}}\|^2}{4s}}$$

General solution :

$$f(\mathbf{x},s) = \frac{1}{\left(2\sqrt{\pi s}\right)^3} \int_{\mathbb{R}^3} e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{4s}} u\left(\mathbf{y}\right) d\mathbf{y}$$

Harmonic analysis and SR geometry

- To understand correctly V1, we would have to correlate harmonic analysis and sub-Riemannian geometry, and in particular investigate the sub-elliptic Laplacian and the heat kernel.
- For the Heisenberg group, there are works of R. Beals, B. Gaveau, P. Greiner, D-Ch Chang.

The problem is rather difficult since there are cut points in every neighborhood of each point and the classical analysis of heat equation fails at these singular points (B. Gaveau, IHP, 26-10-2005).

The sub-Riemannian Heisenberg case

- Gaveau, Beals, Greiner, Chang.
- The problem is complex because there exists a complicated cut locus.
- Coordinates (z, t) in \mathbb{R}^3 . Heat equation :

$$\frac{\partial f(z,t,s)}{\partial s} = \Delta_{\mathcal{K}} f(z,t,s)$$

with the sub-Riemannian Laplacian.

Heat kernel :

$$P(z,t,s) = \frac{1}{(2\pi s)^2} \int_{\mathbb{R}} \frac{2\tau}{\sinh(2\tau)} e^{\left(\frac{i\tau t}{s} - \left(\frac{\|z\|^2}{2s}\right)\frac{2\tau}{\tanh(2\tau)}\right)} d\tau$$

$$= \frac{1}{(2\pi s)^2} \int_{\mathbb{R}} V(\tau) e^{\left(-\frac{\Sigma(z,t,\tau)}{s}\right)} d\tau$$
with $V(\tau) = \frac{2\tau}{\sinh(2\tau)} \quad \Sigma(z,t,\tau) = -i\tau t + \|z\|^2 \frac{\tau}{\tanh(2\tau)}$
to be compared with

$$P(\mathbf{x},s) = \frac{1}{(2\sqrt{\pi s})^3} e^{-\frac{\|\overline{\mathbf{x}}\|^2}{4s}}$$

Application to spontaneous geometric visual patterns

- A beautiful application of these models of functional architecture concerns entoptic vision (hallucinations).
- Paul Bressloff, Jack Cowan, Martin Golubitsky :
- by encoding the functional architecture of V1 into the Hopfield equations of a neural net, one is able to deduce visual morphological patterns.

$$\frac{\partial a(\mathbf{x}, \theta, t)}{\partial t} = -\alpha a(\mathbf{x}, \theta, t) + \frac{\mu}{\pi} \int_0^{\pi} \int_{\mathbb{R}} w \langle \mathbf{x}, \theta | \mathbf{x}', \theta' \rangle \sigma \left(a(\mathbf{x}', \theta', t) \right) d\mathbf{x}' d\theta' + h(\mathbf{x}, \theta, t)$$
where σ is a non linear gain function (with $\sigma (0) = 0$), *h* an external input and
$$w \langle \mathbf{x}, \theta | \mathbf{x}', \theta' \rangle$$
is the weight of the connection between the neuron $v = (\mathbf{x}, \theta)$ and the neuron $v' = (\mathbf{x}', \theta')$,
 α a parameter of decay (α can be taken = 1)
and μ a parameter of excitability of V1.

The increasing of μ models an increasing of the excitability of V1 due to the action of substances on the nuclei which produce specific neurotransmitters (such as serotonin or noradrenalin).

- Bressloff et al. encode only the strictly coaxial alignements. Here again, it is the simplest model.
- The local vertical connections inside a single hypercolumn yield a term:
 - $w\left\langle \mathbf{x}, \theta | \mathbf{x}', \theta' \right\rangle = w_{\text{loc}} \left(\theta \theta' \right) \delta \left(\mathbf{x} \mathbf{x}' \right)$

where δ is a Dirac function imposing

 $\mathbf{x} = \mathbf{x}'$

The lateral horizontal connections between different hypercolumns yield a term:

$$w\left\langle \mathbf{x},\theta|\mathbf{x}',\theta'\right\rangle = w_{\text{lat}}\left(\mathbf{x}-\mathbf{x}',\theta\right)\delta\left(\theta-\theta'\right)$$

where the factor

$$\delta\left(\theta - \theta'\right)$$

imposes $\theta = \theta'$ and expresses the fact that the horizontal cortico-cortical connections connect parallel pairs.

Dynamically emerging morphologies and bifurcations

We suppose that there exist no external input, that is h = 0. For $\mu = 0$, the state $a \equiv 0$ is trivially the state of the network and it is stable.

 $a \equiv 0$ is the "ground state". It can be very complex (endogeneous activity, spontaneous noise, etc.)

Now, the analysis of the PDE shows that, as the parameter μ increases, this initial activation state $a \equiv 0$ can become unstable and bifurcate for critical values μ_c of μ .

Open problems

 Many problems concerning the modeling of experimental results are open. For instance :

- The very strong correlations between orientation and other variables : spatial frequency (varying along pinwheels rays), phase (varying inside columns), ocular dominance.
- To take into account binocular vision, stereopsis, depth and 3D shapes.
- To take into account the subthreshold activities (integration field) and the responses to natural stimuli (not too simple gratings).

Ugo BOSCAIN

SISSA / Italie

http://www.cmapx.polytechnique.fr/~boscain/

"Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion"

We present a model of geometry of vision which generalizes one due to Petitot, Citti and Sarti.

1) One of the main features is that the primary visual cortex V1 lifts the image from R2 to the bundle of directions of the plane P T R2 = R2 × P 1.

2) In this model a corrupted image is reconstructed by minimizing the energy necessary to activate the orientation columns corresponding to regions in which the image is corrupted.

3) The minimization process gives rise to an hypoelliptic heat equation on PTR^2 . The hypoelliptic heat equation is studied using generalized Fourier transform.

Références :

Ugo Boscain, Jean Duplaix, Jean-Paul Gauthier, Francesco Rossi, Anthropomorphic image reconstruction via hypoelliptic diffusion. <u>http://arxiv.org/abs/1006.3735</u>

Ugo Boscain, Grégoire Charlot, Francesco Rossi "Existence of planar curves minimizing length and curvature", to appear in Journal of Mathematical Sciences.

I. Moiseev, Yu. L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane, ESAIM: COCV, to appear

Anthropomorphic image reconstruction via hypoelliptic diffusion

Ugo Boscain (CNRS, CMAP, Ecole Polytechnique, Paris, France)

Jean-Paul Gauthier (Toulon) Francesco Rossi (Marseille)

October 4, 2010

A3. Which curves are lift of planar curves?

A curve in $(x_1(t), x_2(t), \alpha(t))$ in $\mathbf{R}^2 \times P^1$ is the lift of a planar curve if

$$\alpha(t) = \arctan\left(\frac{\dot{x}_2(t)}{\dot{x}_1(t)}\right) \iff \begin{cases} \dot{x}_1(t) = u(t)\cos(\alpha(t)) \\ \dot{x}_2(t) = u(t)\sin(\alpha(t)) \\ \dot{\alpha}(t) = v(t) \end{cases}, \quad \alpha \in [0,\pi]/\sim (1)$$

i.e. writing $x = (x_1, x_2, \alpha)$ if

$$\dot{x} = uX_1 + vX_2, \quad X_1 = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \\ 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

Projective Reed-Shepp car

Remark: If $\theta \in [0, 2\pi] \setminus \sim$ then we have to assume $u \ge 0$ otherwise α is not the angle of (\dot{x}_1, \dot{x}_2)

 \rightarrow but this choice gives problems for existence of minimizers

B1. What to minimize?

there are many models describing situations where the brain takes the decision that minimize some cost (which can be external or internal to the brain)

 \rightarrow when moving objects with the hands, the brain minimizes a compromise between energy and the stress of muscles (external cost).

 \rightarrow For reconstruction of images, the (internal) minimized cost is the energy necessary to activate neurons that are not naturally activated by the image. Given a neuron that is already active, it is easy to make activation of neurons that are:

-) close to it,

-) sensitive to a similar direction.

i.e. close in $\mathbf{R}^2 \times P^1$.

The most natural cost for lift of planar curves on $PT\mathbf{R}^2$

Riemannian length:

$$\int_b^c \sqrt{\dot{x}_1^2 + \dot{x}_2^2 + \beta^2 \dot{\alpha}^2} \ ds = \int_b^c \sqrt{u^2 + \beta^2 v^2} \ ds \to \min$$

on all curves in ${\cal PTR}^2$ that are lift of planar curves (non-holonomic constraint)

Then we get a problem of sub-Riemannian geometry (on $PT\mathbf{R}^2$):

$$\dot{x} = uX_1 + vX_2, \quad \int_b^c \sqrt{u^2 + \beta^2 v^2} ds \to \min \quad \sim \int_b^c \left(u^2 + \beta^2 v^2\right) ds \to \min,$$
$$x = (x_1, x_2, \alpha), \quad X_1 = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \\ 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$
$$\dim(\operatorname{span}_x\{X_1, X_2, [X_1, X_2]\}) = 3$$

initial and final positions are fixed in $PT\mathbf{R}^2$.

Other costs In all problems of image reconstruction the curve is reconstructed by minimizing a compromise between length and curvature + invariance by SE(2).Since $K(t) = \frac{\dot{x}_1 \ddot{x}_2 - \dot{x}_2 \ddot{x}_1}{(\dot{x}_1^2 + \dot{x}_2^2)^{3/2}}$ it is natural to require $\gamma \in \mathcal{C}^2$, $\dot{\gamma} \neq 0$, = Elastica type functionals $\int_0^{L(\gamma)} K^2(\gamma) \; ds$ (Mumford, Cao, Gousseau, Masnou, Pérez, Coope, Linnér) • $\int_0^{L(\gamma)} (1 + K^2(\gamma)) ds$ (Mumford, Bellettini, Linnér). Minimizers must be studied in sophisticated functional spaces and may present angles (the curvature becomes a measure). \rightarrow also nonisotropic diffusion (Duits, Franken) • a model due to Citti and Sarti $\int_0^{L(\gamma)} \sqrt{1 + K^2(\gamma)} \, ds$ (based on certain neuro-physiological observations) \rightarrow no existence (G. Charlot, F. Rossi, U.B., 2010). There exists minimizing sequences whose limit is: boundary conditions are not satysfied The same happens with our cost and $\alpha \in [0, 2\pi] \setminus \sim$ and $u \ge 0$.

Plan	
\rightarrow reconstruction of curves	
\rightarrow reconstruction of images	

Pontryagin Maximum Principle

Consider a control problem of the type

$$\dot{x} = uX_1 + vX_2, \quad \int_0^T \left(u^2 + v^2\right) ds \to \min$$

where $x \in M^3$, and dim(Span{ $X_1, X_2, [X_1, X_2]$ }) = 3. Then optimal trajectories are solutions of the Hamiltonian system (called geodesics):

$$H = \frac{1}{2} (\langle P, X_1 \rangle^2 + \langle P, X_2 \rangle^2)$$

corresponding to a level set $H = cost(T) \neq 0$.

 \rightarrow In the following I fix $H = \frac{1}{2}$ (arclength) \rightarrow the initial covector P(0) parameterizes the geodesics
In our case

$$\begin{aligned} x &= (x_1, x_2, \alpha), \quad P = (P_1, P_2, P_3), \quad X_1 = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \\ 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{aligned}$$

Hence with $P_1 = P_r \cos P_a, P_2 = P_r \sin P_a$, we have
$$H &= \frac{1}{2} \left((P_1 \cos \alpha + P_2 \sin \alpha)^2 + P_3^2 \right) = \frac{1}{2} \left((P_r^2 \cos^2(\alpha - P_a) + P_3^2) \right)$$

$$\dot{x}_1 &= \frac{\partial H}{\partial P_1} = P_r \cos(\alpha - P_a) \cos \alpha \quad \dot{P}_1 = -\frac{\partial H}{\partial x_1} = 0$$

$$\dot{x}_2 &= \frac{\partial H}{\partial P_2} = P_r \cos(\alpha - P_a) \sin \alpha \quad \dot{P}_2 = -\frac{\partial H}{\partial x_2} = 0$$

$$\dot{\alpha} &= \frac{\partial H}{\partial P_3} = P_3 \qquad \dot{P}_3 = -\frac{\partial H}{\partial \alpha} = \frac{1}{2} P_r^2 \sin(2(\alpha - P_a))$$

Pendulum equation $\ddot{\alpha} = \frac{1}{2} P_r^2 \sin(2(\alpha - P_a))$

 \rightarrow changing P_r one changes the type of trajectory (distance of cusps)

 \rightarrow changing P_a one changes "where to starts on the trajectory"

This is true for the problem formulated on PTS^2 :

all possible paths are activated as a Brownian motion

 $dx = X_1 dW_1 + X_2 dW_2, \to \partial_t \psi(t, x) = (L_{X_1}^2 + L_{X_2}^2) \psi(t, x)$

 $L_{X_1}^2 + L_{X_2}^2 = (\cos(\alpha)\partial_{x_1} + \sin(\alpha)\partial_{x_2})^2 + \beta^2 \partial_{\alpha}^2$

(sub-elliptic Heat equation, under Hörmander condition $\Rightarrow,$ solutions are smooth)

 \rightarrow highly non-isotropic diffusion

PLAN:

- lifting the image to PTR² and using it as an initial condition for the hypoelliptic heat eq.
- 2) making convolution with the hypoelliptic heat kernel (Agrachev, Gauthier, Rossi, U.B.)
- 3) projecting down the image

1) lifting an image to a distribution in $PT\mathbf{R}^2$

Assume that the grey level of an corrupted image is described by a function $f_c : \mathbf{R}_c := \mathbf{R}^2 \setminus \Omega \to [0, \infty[$. The set Ω represents the region where the image is corrupted.

(Hyp) the set \mathbf{R}_c is an open subset of \mathbf{R}^2 and f_c is \mathcal{C}^1 .

Let us lift the domain \mathbf{R}_c of f_c in $PT\mathbf{R}^2$. This is made by associating to every point (x_1, x_2) of \mathbf{R}_c the direction $\alpha \in \mathbf{R}/\sim$ of the level set of f_c at the point (x_1, x_2) .

 $L(f_c) = \{ (x_1, x_2, \alpha) \in \mathbf{R}_c^2 \times P^1 \text{ s.t. } \nabla f_c(x_1, x_2) \cdot (\cos(\alpha), \sin(\alpha)) = 0 \},\$

Why a Morse function?

Describe an Image by $\mathcal{I} \in L^2(D,R)$ (where D is an open bounded domain of $R^2)$

 \rightarrow even if images are not described by Morse functions, it is widely accepted that the retina approximately smoothes the images by making the convolution with a Gaussian function

[1] L. Peichl, H. Wässle, J Physiol, Vol. 291, 1979, pp. 117-41.

[2] D. Marr; E. Hildreth, Proceedings of the Royal Society of London, Vol. 207, No. 1167. (Feb. 29, 1980), pp. 187-217.

 \rightarrow we have proved that we show that, given $G(\sigma_x, \sigma_y)$, the two dimensional Gaussian centered in (0, 0) with standard deviations $\sigma_x, \sigma_y > 0$, then the smoothed image

$$f = \mathcal{I} * G(\sigma_x, \sigma_y) \in L^2(\mathbf{R}^2, \mathbf{R}) \cap \mathcal{C}^{\infty}(\mathbf{R}^2, \mathbf{R}),$$

is generically a Morse function.

 \rightarrow i.e. the set { $\mathcal{I} \in L^2$ such that f is a Morse function} is a countable intersection of open and dense subsets.

 \rightarrow the set { $\mathcal{I} \in L^2$ such that $f_{\mathbf{K}}$ is a Morse function} is open and dense.

The kernel

The kernel on SE(2) $\psi(t,g) = \psi_0 * p_t(g) = \int_G \psi_0(\bar{g}) p_t(\bar{g}^{-1}g) \mu(\bar{g})$ where $g = (x_1, x_2, \alpha)$. $\mathbf{p}_t(x_1, x_2, \alpha) = \int_0^\infty \lambda d\lambda \sum_{k=0}^\infty \int_0^{2\pi} du$ $\left(\exp[-a_c(k, \lambda)t] C(k, \frac{\lambda^2}{4}, u) C(k, \frac{\lambda^2}{4}, u + \alpha) \cos[\lambda[x_1 \cos(u) - x_2 \sin(u)] + \exp[-a_s(k, \lambda)t] S(k, \frac{\lambda^2}{4}, u) S(k, \frac{\lambda^2}{4}, u + \alpha) \cos[\lambda[x_1 \cos(u) - x_2 \sin(u)] \right)$ (Periodic Mathieu functions. Here $\beta = 1$.) **The kernel on** $PT\mathbf{R}^2$ $\hat{f}_r(t,g) = \hat{f}_c * K_t(g) = \int_G \hat{f}_c(\bar{g}) K_t(g, \bar{g}) \mu(\bar{g}).$ $K_t(x_1, x_2, \alpha, \bar{x}_1, \bar{x}_2, \bar{\alpha}) := p_t((\bar{x}, \bar{y}, \bar{\alpha})^{-1} \circ (x, y, \alpha)) + p_t((\bar{x}, \bar{y}, \bar{\alpha})^{-1} \circ (x, y, \alpha + \pi)).$ chirality of pinwheels?

NUMERICAL IMPLEMENTATION

Problems:

- implementing numerically Mathieu functions is difficult
- solving numerically the non-isotropic diffusion equation

 \rightarrow not good because there are two different scales (there are no algorithms to compute numerically non-isotropic diffusion)

• we are solving numerically the (noncommutative) Fourier transform of:

$$\partial_t \psi(t, x_1, x_2, \alpha) = \left(\left(\cos(\alpha) \partial_{x_1} + \sin(\alpha) \partial_{x_2} \right)^2 + \beta^2 \partial_\alpha^2 \right) \psi(t, x_1, x_2, \alpha)$$

That is the Mathieu equation

$$\partial_t \Phi(t,\theta) = (\beta^2 \frac{d^2}{d\theta^2} + \lambda^2 \cos^2(\theta)) \Phi(t,\theta)$$

Claude TOUZET

LNIA / Univ. de Provence

http://www.univ-provence.fr/gsite/document.php?project=umr_6149&doc=perso_touzet

"Modèles Cognitifs de l'Attention Visuelle"

Le Monde réel est cohérent et continu. Il présente de fait des régularités - une structuration - que chacun de nous perçoit. Lorsque la perception est visuelle alors le traitement de l'information est appelé la vision.

C'est un processif cognitif au sens où le cortex est impliqué et qu'il permet des traitements hors de portée des autres animaux, tels que la lecture par exemple. La structure neuronale du cortex est connue, mais les liens qui unissent le cortex au Monde réel font débat.

La Théorie neuronale de la Cognition explique comment les phénomènes observés d'attentions endogène et exogène sont produits.

En résumé, le cortex est constitué de multiples cartes corticales organisées au sein de hiérarchies, chaque carte corticale jouant le rôle d'un filtre de nouveauté, passant au niveau hiérarchique suivant (« bottom-up ») les événements imprévus : c'est l'attention exogène.

Des connexions neuronales « top-down » suffisamment nombreuses permettent la mise en place d'une véritable pré-activation de l'ensemble de la hiérarchie en fonction du but identifié à un niveau quelconque de la hiérarchie : c'est l'attention endogène.

Notons en guise de conclusion que ce modèle cognitif de l'attention visuel est généralisable à l'ensemble des processus cognitifs, et donc propose une explication de ce que nous sommes.

Référence :

C. Touzet, Conscience, Intelligence, Libre-Arbitre ? Les réponses de la Théorie neuronale de la Cognition, Editions la Machotte, 2010, 156 pages, ISBN : 978-2-919411-00-9. (www.machotte.fr)

Modèles cognitifs de l'attention visuelle

C. Touzet

claude.touzet@univ-provence.fr

Laboratoire de Neurosciences Intégratives et Adaptatives (LNIA) UMR6149 CNRS-Université de Provence, Marseille

5ème Ecole « Recherches Multimodales d'Informations » (ERMITES'2010) – Vision & Cognition

Résumé

Le Monde réel est cohérent et continu. Il présente de fait des régularités - une structuration - que chacun de nous perçoit. Lorsque la perception est visuelle alors le traitement de l'information est appelé la vision. C'est un processif cognitif au sens où le cortex est impliqué et qu'il permet des traitements hors de portée des autres animaux, tels que la lecture par exemple. La structure neuronale du cortex est connue, mais les liens qui unissent le cortex au Monde réel font débat. La Théorie neuronale de la Cognition explique comment les phénomènes observés d'attentions endogène et exogène sont produits. En résumé, le cortex est constitué de multiples cartes corticales organisées au sein de hiérarchique suivant (« bottom-up ») les événements imprévus : c'est l'attention exogène. Des connexions neuronales « top-down » suffisamment nombreuses permettent la mise en place d'une véritable pré activation de l'ensemble de la hiérarchie en fonction du but identifié à un niveau quelconque de la hiérarchie : c'est l'attention visuel est généralisable à l'ensemble des processus cognitifs, et donc propose une explication de ce que nous sommes.

Sommaire

Le Monde réel

Le cortex

Théorie neuronale de la Cognition

Apprentissage

Comportement motivé

Attention endogène

Attention exogène

Chacun de nous vit certaines situations et pas d'autres. Ces situations ne sont pas réparties de manière homogène, mais regroupées dans certaines régions de l'Espace multidimensionnel. Ces régions définissent notre Environnement personnel et rien d'autre n'existe.

Pour estimer les distances dans un Espace multi-dimensionnel, nous pouvons utiliser le nombre de données (situations) qui séparent deux données particulières. Dans le cas d'un espace de dimension 1 (1-D), la donnée n° 2 est plus proche de la n° 1 que la n° 3. Dans le cas d'un espace de dimension 2 (2-D), la distance qui sépare le n° 1 et le n° 2 est de 2, celle qui sépare le n° 1 et le n° 3 est 1945, celle qui sépare le n° 2 et le n° 3 de 3.

Le cortex

Le cortex (4 000 cm²) est replié sur luimême pour tenir dans la boite crânienne (IRM). Brain MRI Vector representation, Nevit Dilmen, 2006, licence Creative Commons Attribution ShareAlike 3.0. (Wikipedia).

(a) Le cortex est organisé en centaines de cartes corticales.
(b) Chaque carte corticale contient plus d'un millier de colonnes corticales, chacune comprenant un millier de micro-colonnes.

Carte corticale codant les orientations spatiales des stimuli (pluriel de stimulus) présentés sur la rétine. Chaque colonne corticale s'excite principalement pour un contraste dans une orientation précise, en un point précis de la rétine. Sur l'image rétinienne, nous avons dessiné les stimuli pour 3 localisations. Deux de ces localisations génèrent des activations sur des colonnes du morceau de carte dessiné ici. Notez l'alternance œil droit-œil gauche sur la carte. La localisation sur la rétine de la zone d'intérêt est identique entre deux colonnes voisines, même si elles appartiennent à des yeux différents.

L'Homoncule (de Penfield) est la carte corticale représentant notre corps. Les informations tactiles construisent l'Homoncule sensoriel (hémisphère gauche), tandis que les informations envoyées aux muscles construisent l'Homoncule moteur (hémisphère droit).

D'après W. Penfield, T. Rasmussen, *The cerebral cortex of man*, Macmillan, 1950, pp. 214-215.

Une carte auto-organisatrice est une projection d'un Espace multidimensionnel qui respecte fréquence et voisinage. Ce qui est fréquent dans l'Espace est mieux représenté sur la carte que ce qui ne l'est pas. Ce qui est voisin dans l'Espace est voisin sur la carte. A chaque colonne de la carte est associée une région de l'Espace. Cette région est le « champ récepteur » de la colonne.

Une carte corticale avec ses colonnes (a) peut être représentée par un point au centre de chaque colonne (b). Cependant, il est plus utile de « visualiser » le voisinage de chaque colonne. Les lignes verticales et horizontales en (c) donnent le voisinage. A chaque intersection, il y a une colonne. Chaque colonne a 4 colonnes voisines (sauf sur les bords : 3 voisines, et dans les coins : 2 voisines). De plus, comme les comportements des micro-colonnes d'une colonne sont similaires, nous ne dirons plus « colonne », mais « neurone » (ce neurone en représente environ 110 000).

Le cortex

(a) Chaque neurone est associé à un champ récepteur (représenté par un cercle) dans l'Espace multi-dimensionnel. Les champs récepteurs voisins sont associés à des neurones voisins.

(b) Lorsque l'on place les neurones directement au centre de leur champ récepteur et que l'on trace les voisinages, alors l'observateur a l'impression de voir la carte se tordre dans l'Espace multidimensionnel. Il s'agit d'une vue de l'esprit. Le cortex ne change pas de forme – mais il est utile de se rendre compte de comment la carte s'organise pour représenter les données avec le minimum d'erreur.

« Si deux neurones A et B interconnectés sont actifs dans une même fenêtre temporelle, alors la force des connexions entre A et B, et aussi entre B et A, est renforcée ». (Loi de Hebb)

Le cortex est constitué de multiples cartes autoorganisatrices interconnectées. Les cartes les plus proches des capteurs sensoriels sont organisées avant les autres. Elles constituent les cortex primaires (vision, audition, tact, etc.). Elles alimentent des cartes appartenant aux cortex secondaires, puis les cortex associatifs. Il y a de très nombreuses connexions directes et réciproques.

La carte auto-organisatrice est une mémoire associative. Pour obtenir une réponse, il faut fournir une partie de cette réponse.

(a) Si la réponse cherchée est le mot de 10 lettres le plus fréquent de ce livre se terminant par la lettre « s », la question est une activation de la 10^{ème} connexion avec la lettre « s ». Cette activation est envoyée à tous les neurones de la carte.
(b) Il suffit alors de décoder les connexions du neurone gagnant vers les entrées pour connaître le mot recherché.

Théorie neuronale de la Cognition

Deux cartes auto-organisatrices (l'une après l'autre) permettent d'extraire des relations complexes entre les données. Ici, B extrait des proportions d'activation entre diverses zones de la carte A.

Trois cartes auto-organisatrices permettent la fusion de données. Il suffit que les données traitées par chacune des deux premières cartes appartiennent à des modalités différentes (par exemple, la forme et la couleur), et qu'elles alimentent la troisième carte. C'est cette dernière carte qui réalise la fusion de données.

Six niveaux de cartes auto-organisatrices sont nécessaires pour passer de l'image sur la rétine à la reconnaissance orthographique d'un mot (le 1^{er} niveau est réalisé par l'œil), d'après Dehaene

Théorie neuronale de la Cognition

Un « *concept* » *implique l'activation de multiples neurones au sein de plusieurs cartes.*

Ordre dans l'organisation

Certitude

Méditation

La méthode d'apprentissage de la lecture dite « globale » fait disparaître deux étapes supervisées. L'acquisition de la lecture devient alors pratiquement impossible à l'apprenti lecteur.

auto-organisatrices. Les cartes s'organisent en fonction des régularités qu'elles perçoivent dans les données reçues. Certaines cartes doivent s'organiser avant un âge limite (7 ans pour les cartes liées au langage et à la socialisation). 198

Le voisinage conservé par la carte garantit que les situations voisines sont voisines sur la carte. Il est donc toujours possible de trouver une situation voisine de la situation actuelle qui soit plus proche de la situation « but ».

(a) Le but et la situation actuelle définissent la situation intermédiaire désirée.

(b) La variation entre la situation désirée et la situation courante permet de sélectionner un neurone qui code pour l'action correspondante (c). 199

La vue d'un arbre active le concept « Arbre », qui active alors l'ensemble des éléments liés à ce concept.

Attention endogène

Activation réciproque du neurone B sur A. Ces deux schémas sont équivalents (une flèche représente une synapse excitatrice, un rond une synapse inhibitrice).

Prédiction de l'évolution de la situation courante. (*a*) *et (b) représentent la même carte, mais dorénavant nous ne dessinerons plus les voisinages.*

Attention exogène (1) et attention endogène (2). En (1) il y a transfert vers les niveaux supérieurs des événements inattendus et arrêt de la transmission pour les événements prévisibles. En (2) il y a facilitation de l'activation de neurones de niveau inférieur appartenant à des événements prévus (attendus) à des niveaux supérieurs.

Synergie des attentions endogène et exogène

Modélisation neuronale des processus attentionnels. Les excitations montantes sont plus localisées et plus fortes que celles en provenance des connexions réciproques (plus diffuses). Les connexions sur une même carte sont inhibitrices et localisées.

Références

C. Touzet, "Modeling and Simulation of Elementary Robot Behaviors using Associative Memories", *International Journal of Advanced Robotic Systems*, Vol 3 n° 2, June 2006.

Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: a proposal. *Trends Cogn Sci*, 9(7), 335-341.

M. Silver and S. Kastner (2009) – Topographic maps in human frontal and parietal cortex, *Trends in Cognitive Sciences*, Vol. 13, No. 11, 488-495.

Donald Hebb, The Organization of Behavior : A Neuropsychological Theory, Wiley, 1949.

Teuvo Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, Vol. 30, 2001. Third Ed., 501 pages. ISBN 3-540-67921-9, ISSN 0720-678X

D. Hubel, *Eye, Brain, and Vision*, Freeman, May 1995. ISBN 978-0-7167-6009-2. Disponible sur le Web à l'adresse : http://hubel.med.harvard.edu/book/ch5.pdf

W. Penfield, T. Rasmussen, The cerebral cortex of man, Macmillan, 1950.

J. Paillard - (1987) L'ordinateur et le cerveau : un contraste saisissant, *Bulletin de l'AFCET, INTERFACES*, 57, pp 4-9.

C. Touzet, *Conscience, Intelligence, Libre-Arbitre ? Les réponses de la Théorie neuronale de la Cognition*, Editions la Machotte, 2010, 156 pages, ISBN : 978-2-919411-00-9. (www.machotte.fr)

Hervé LE BORGNE CEA-LIST http://elm.eeng.dcu.ie/~hlborgne/

"Description de Scènes Naturelles par Composantes Indépendantes"

De nombreuses études montrent que les détecteurs corticaux pourraient résulter de l'application d'un principe de réduction de redondance par indépendance statistique de leurs activités. Nous utilisons l'Analyse en Composantes Indépendantes (ACI) pour générer de tels détecteurs, aboutissant à un codage parcimonieux de l'information.

1) Nous en effectuons une analyse quantitative mettant en valeur l'adaptation des détecteurs aux catégories d'images considérées. Le cadre applicatif concerne la classification de scènes naturelles, pour lequel l'adaptation des descripteurs aux statistiques des catégories à discriminer est attrayante.

2) Nous proposons deux schémas de codage de l'information. Le premier correspond à des modélisations de complexité croissante de la densité résultante du filtrage d'une image par les descripteurs considérés. Le second schéma est une exploitation directe de l'adaptation des filtres aux catégories, qui est semblable aux descripteurs de type "sacs de mots visuels".

Ces travaux [1,2] entrent dans le cadre plus large des rapports entre perception visuelle et sciences de l'ingénieur, dont les apports réciproques permettent une meilleure compréhension de chacun des domaines [3].

Références :

[1] Le Borgne H., Guérin-Dugué A., Antoniadis A. Representation of images for classification with independent features. Pattern Recognition Letters (PRL), vol 25, N° 2, pp 141-154, january 2004.

[2] H. Le Borgne, A. Guérin-Dugué, N.E. O'Connor Learning Mid-level Image Features for Natural Scene and Texture Classification. IEEE transaction on Circuits and Systems for Video Technology, 17(3):286-297, march 2007.

[3] Guyader N., Le Borgne H., Hérault J., Guérin-Dugué A. Towards the introduction of human perception in a natural scene classification system. Proc. of the IEEE International workshop on Neural Networks for Signal Processing (NNSP'2002), pp 385-394, Martigny Valais, Switzerland, September 4-6, 2002

Application de l'ACI
Séparation de signaux
Parole
 Nécessite des modèles convolutifs
 Biomédical: signaux EEG, IRMf et MEG
 [Beckman Smith, 2003]
Données financières
 La prédiction financière est un travail de longue haleine
 Extraction de caractéristiques d'images naturelles
Cf après
Classification d'images
Cf après
 « Visages indépendants » [Barlett et al, 1998]
Compression d'images
 Comparable à JPEG mais moins bien que JPEG2000
Débruitage d'image [Hyvarinen et al. 2001]
Estimation de transparence
 Modèle additif [Farid & &Adelson, 1999]
CEC List

		LII	CL.	SC	н	CL +	SC F	HI + CL	SC +	CL +	Gica	Lica	Gica + color	+ color
Cities	200	33.9	43.3	19.4	25.0	41.7	42.8	36.7	32.8	51.7	70.0	46.1	47.8	69.4
Indoor	541	43.8	25.7	15.4	21.1	39.0	48.0	24.2	21.5	43.4	41.1	51.1	55.3	66.6
Firework	100	48.8	85.0	73.8	72.5	96.3	96.3	73.8	73.8	95.0	47.5	91.3	56.3	88.8
Cars	200	45.0	27.2	26.1	22.8	49.4	51.1	33.9	24.4	52.2	44.4	50.0	50.0	56.7
Egypt	100	13.8	31.3	52.5	10.0	26.3	25.0	15.0	8.8	31.3	25.0	25.0	36.3	33.8
Flowers	400	41.8	24.5	30.0	30.5	39.5	50.8	33.2	32.9	50.3	82.9	81.6	70.5	73.2
Monkeys	100	17.5	25.0	23.8	23.8	25.0	26.3	26.3	28.7	32.5	40.0	40.0	70.0	62.5
Churches	96	46.1	17.1	15.8	42.1	30.3	42.1	43.4	42.1	34.2	35.5	40.8	42.1	36.8
Castles	100	11.3	17.5	20.0	18.8	16.3	20.0	17.5	15.0	16.3	31.3	50.0	20.0	27.5
Mountains	100	37.5	32.5	18.8	23.8	28.7	45.0	30.0	33.8	38.8	37.5	36.3	45.0	43.8
Doors	100	76.3	60.0	33.8	55.0	72.5	65.0	58.8	56.3	68.8	92.5	91.3	80.0	93.8
Total	2037	40.1	31.3	25.6	27.9	41.4	47.7	32.4	30.0	47.1	54.0	57.6	55.6	63.8

Evaluation

Class name	Size	BoK_{50}	BoK100	BoK_{200}	BoK 1000	G _{ica}	Lica	G _{ica} + color	LICA + color
Cities	200	25.0	13.3	11.7	6.7	70.0	46.1	47.8	69.4
Indoor	541	21.7	23.8	25.0	6.9	41.1	51.1	55.3	66.6
Firework	100	45.0	41.3	37.5	98.8	47.5	91.3	56.3	88.8
Cars	200	26.7	36.1	41.7	21.7	44.4	50.0	50.0	56.7
Egypt	100	42.5	36.3	33.8	28.7	25.0	25.0	36.3	33.8
Flowers	400	20.8	22.6	22.1	3.2	82.9	81.6	70.5	73.2
Monkeys	100	15.0	15.0	15.0	2.5	40.0	40.0	70.0	62.5
Churches	96	50.0	51.3	51.3	44.7	35.5	40.8	42.1	36.8
Castles	100	37.5	36.3	38.8	18.8	31.3	50.0	20.0	27.5
Mountains	100	20.0	13.8	17.5	1.3	37.5	36.3	45.0	43.8
Doors	100	42.5	41.3	38.8	25.0	92.5	91.3	80.0	93.8
Total	2037	26.7	26.7	27.2	15.0	54.0	57.6	55.6	63.8

• Probable problème dans BoSIFT

ceali/t

Echantillonnage « dense » plus adapté

Les scènes naturelles ont une structure très contrainte Un codage efficace des scènes naturelles peut être obtenu par un principe de réduction de redondance L'ACI permet de mettre en œuvre un tel principe Les unités codantes résultantes d'adaptent aux statistiques des (catégories des) images Plusieurs modèles de signatures possibles

Julien MAIRAL

ENS / INRIA WILLOW

http://www.di.ens.fr/~mairal

"Sparse Coding and Dictionary Learning"

La modélisation parcimonieuse de signaux consiste à représenter des données vectorielles comme une combinaison linéaire d'un petit nombre d'éléments d'un dictionnaire. Définir un dictionnaire adapté à une classe de signaux telle que les images naturelles, a donné lieu à de nombreux travaux. Nous nous intéresserons ici à une approche récente qui consiste à apprendre le dictionnaire à partir de données d'entraînement. Nous présenterons de récentes avancées utilisant cette technique en traitement d'image, apprentissage statistique et vision par ordinateur pour la reconnaissance d'objets. Ce tutoriel est structuré en 4 parties :

- 1) Sparse coding and dictionary learning for Image processing
 - Image denoising
 - Inpainting, demosaicking
 - Extensions to video processing
 - Other applications, deblurring, inverse haltoning
- 2) Sparse linear models and the dictionary learning formulation
 - Why does the 11-norm induce sparsity?
 - Sparsity-inducing norms and group-sparsity.
 - Dictionary learning and matrix factorization (PCA, NMF, hard/soft clustering)
 - New sparse models and structured sparsity.
- 3) Applications to computer vision
 - Learning codebooks for image classification
 - Modelling the local appearance of image patches
- 4) Optimization for sparse methods
 - Greedy algorithms
 - 11-optimization
 - stochastic optimization for dictionary learning

Références :

J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman. Supervised Dictionary Learning. Advances Neural Information Processing Systems, 2008. Vancouver. Canada.

J. Mairal, G. Sapiro and M. Elad. Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Modeling and Simulation. Vol 7. No 1.2008. p 214-241.

J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding Journal of Machine Learning Research, volume 11. pages 19-60. 2010.

Sparse representations for image restoration Color video denoising, [Mairal, Sapiro, and Elad, 2008d]

Sparse representations for image restoration Color video denoising, [Mairal, Sapiro, and Elad, 2008d]

One short slide on compressed sensing

Important message

Sparse coding is not "compressed sensing".

Compressed sensing is a theory [see Candes, 2006] saying that a sparse signal can be recovered from a few linear measurements under some conditions.

- Signal Acquisition: $\mathbf{W}^{\top}\mathbf{y}$, where $\mathbf{W} \in \mathbb{R}^{m \times s}$ is a "sensing" matrix with $s \ll m$.
- Signal Decoding: $\min_{\alpha \in \mathbb{R}^p} \|\alpha\|_1$ s.t. $\mathbf{W}^\top \mathbf{y} = \mathbf{W}^\top \mathbf{D} \alpha$.

with extensions to approximately sparse signals, noisy measurements.

Remark

The dictionaries we are using in this lecture do not satisfy the recovery assumptions of compressed sensing.

Next topics

- A bit of machine learning.
- Why does the ℓ_1 -norm induce sparsity?
- Some properties of the Lasso.
- Links between dictionary learning and matrix factorization techniques.
- A simple algorithm for learning dictionaries.
- Beyond sparsity: Group-sparsity, Structured Sparsity

parse Coding and Diction

Sparse Linear Models: the Lasso

• Signal processing: **D** is a dictionary in $\mathbb{R}^{n \times p}$,

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^p}\frac{1}{2}\|\mathbf{y}-\mathbf{D}\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{\alpha}\|_1.$$

• Machine Learning:

$$\min_{\mathbf{w}\in\mathbb{R}^p}\frac{1}{2n}\sum_{i=1}^n(y^i-\mathbf{x}^{i\top}\mathbf{w})^2+\lambda\|\mathbf{w}\|_1=\min_{\mathbf{w}\in\mathbb{R}^p}\frac{1}{2n}\|\mathbf{y}-\mathbf{X}^{\top}\mathbf{w}\|_2^2+\lambda\|\mathbf{w}\|_1,$$

with
$$\mathbf{X} \stackrel{\scriptscriptstyle \Delta}{=} [\mathbf{x}^1, \dots, \mathbf{x}^n]$$
, and $\mathbf{y} \stackrel{\scriptscriptstyle \Delta}{=} [y^1, \dots, y^n]^\top$.

Useful tool in signal processing, machine learning, statistics,... as long as one wishes to **select** features.

Why does the $\ell_1\text{-norm}$ induce sparsity? Exemple: <code>quadratic problem in 1D</code>

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} (y - \alpha)^2 + \lambda |\alpha|$$

Piecewise quadratic function with a kink at zero.

Derivative at 0_+ : $g_+ = -y + \lambda$ and 0_- : $g_- = -y - \lambda$.

Optimality conditions. α is optimal iff:

- $|\alpha| > 0$ and $(y \alpha) + \lambda \operatorname{sign}(\alpha) = 0$
- $\alpha = 0$ and $g_+ \ge 0$ and $g_- \le 0$

The solution is a **soft-thresholding**:

$$\alpha^{\star} = \operatorname{sign}(y)(|y| - \lambda)^{+}.$$

and Dictionary Lea

n Mairal

Matrix Factorization Problems and Dictionary Learning

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathcal{C}}} \sum_{i=1}^{n} \frac{1}{2} \|\mathbf{y}_{i} - \mathbf{D}\boldsymbol{\alpha}_{i}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}_{i}\|_{1}$$

can be rewritten

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathcal{C}}} \frac{1}{2} \| \mathbf{Y} - \mathbf{D} \boldsymbol{\alpha} \|_{F}^{2} + \lambda \| \boldsymbol{\alpha} \|_{1},$$

where $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]$ and $\boldsymbol{\alpha} = [\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_n]$.

Julien Maira

Sparse Coding and Dicti

Matrix Factorization Problems and Dictionary Learning $_{\text{PCA}}$

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n} \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \frac{1}{2} \| \mathbf{Y} - \mathbf{D} \boldsymbol{\alpha} \|_{F}^{2} \text{ s.t. } \mathbf{D}^{\top} \mathbf{D} = \mathbf{I} \text{ and } \boldsymbol{\alpha} \boldsymbol{\alpha}^{\top} \text{ is diagonal.}$$

 $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_p]$ are the principal components.

Matrix Factorization Problems and Dictionary Learning Hard clustering

n Mairal

Sparse Coding and Dictionary Learn

$$\min_{\substack{\boldsymbol{\alpha} \in \{0,1\}^{p \times n} \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\boldsymbol{\alpha}\|_{F}^{2} \text{ s.t. } \forall i \in \{1, \dots, p\}, \ \sum_{j=1}^{p} \alpha_{i}[j] = 1.$$

 $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_p]$ are the centroids of the p clusters.

Julien Mairal

Sparse Coding and Dictionary Lea

Matrix Factorization Problems and Dictionary Learning Soft clustering

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n}_+ \\ \mathbf{D} \in \mathbb{R}^{m \times p}}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\boldsymbol{\alpha}\|_F^2, \text{ s.t. } \forall i \in \{1, \dots, p\}, \sum_{j=1}^p \alpha_i[j] = 1.$$

 $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_p]$ are the centroids of the *p* clusters.

Matrix Factorization Problems and Dictionary Learning NMF+sparsity?

$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{p \times n}_+ \\ \mathsf{D} \in \mathbb{R}^{m \times p}_+}} \frac{1}{2} \| \mathbf{Y} - \mathbf{D} \boldsymbol{\alpha} \|_F^2 + \lambda \| \boldsymbol{\alpha} \|_1.$$

Most of these formulations can be addressed the same types of algorithms.

Julien Mairal

• = •

Sparse Coding and Dictionary Learning

Э

Sparsity-Inducing Norms (2/2)

Another popular choice for ψ :

• The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathcal{G}} \|\boldsymbol{\alpha}_{G}\|_{2} = \sum_{G \in \mathcal{G}} \left(\sum_{j \in \mathcal{G}} \boldsymbol{\alpha}_{j}^{2}\right)^{1/2}, \text{ with } \mathcal{G} \text{ a partition of } \{1, \dots, p\}.$$

- The l₁-l₂ norm sets to zero groups of non-overlapping variables (as opposed to single variables for the l₁ norm).
- For the square loss, group Lasso [Yuan and Lin, 2006].
- However, the ℓ_1 - ℓ_2 norm encodes fixed/static prior information, requires to know in advance how to group the variables !

Applications:

- Selecting groups of features instead of individual variables.
- Multi-task learning, multiple kernel learning.

Non-local Sparse Image Models

Image Self-Similarities, [Buades et al., 2006, Efros and Leung, 1999, Dabov et al., 2007]

Image pixels are well explained by a Nadaraya-Watson estimator:

$$\hat{\mathbf{x}}[i] = \sum_{j=1}^{n} \frac{\mathcal{K}_{h}(\mathbf{y}_{i} - \mathbf{y}_{j})}{\sum_{l=1}^{n} \mathcal{K}_{h}(\mathbf{y}_{i} - \mathbf{y}_{l})} \mathbf{y}[j], \qquad (1)$$

Successful application to texture synthesis: Efros and Leung [1999] ... to image denoising (Non-Local Means): Buades et al. [2006] ... to image demosaicking: Buades et al. [2009]

Non-local Sparse Image Models

Image Self-Similarities, [Buades et al., 2006, Efros and Leung, 1999, Dabov et al., 2007]

Image pixels are well explained by a Nadaraya-Watson estimator:

$$\hat{\mathbf{x}}[i] = \sum_{j=1}^{n} \frac{K_h(\mathbf{y}_i - \mathbf{y}_j)}{\sum_{l=1}^{n} K_h(\mathbf{y}_i - \mathbf{y}_l)} \mathbf{y}[j], \qquad (1)$$

Successful application to texture synthesis: Efros and Leung [1999] ... to image denoising (Non-Local Means): Buades et al. [2006] ... to image demosaicking: Buades et al. [2009]

Block-Matching with 3D filtering (BM3D) Dabov et al. [2007], Similar patches are jointly denoised with orthogonal wavelet thresholding + several (good) heuristics: \implies state-of-the-art denoising results, less artefacts, higher PSNR.

Non-local Sparse Image Models

- **non-local means**: **stable** estimator. Can fail when there are no self-similarities.
- sparse representations: "unique" patches also admit a sparse approximation on the learned dictionary. potentially unstable decompositions.

Improving the stability of sparse decompositions is a current topic of research in statistics Bach [2008], Meinshausen and Buehlmann [2010]. Mairal et al. [2009b]: Similar patches should admit similar patterns:

Non-local Sparse Image Models Basic scheme for image denoising: (a) Cluster patches $S_i \triangleq \{j = 1, ..., n \text{ s.t. } \|\mathbf{y}_i - \mathbf{y}_j\|_2^2 \le \xi\},$ (3) (a) Learn a dictionary with group-sparsity regularization $(\mathbf{A}_i)_{i=1}^n, \mathbf{D} \in \mathcal{C} \sum_{i=1}^n \frac{\|\mathbf{A}_i\|_{1,2}}{|S_i|} \text{ s.t. } \forall i \sum_{j \in S_i} \|\mathbf{y}_j - \mathbf{D}\alpha_{ij}\|_2^2 \le \varepsilon_i$ (4) (5) Estimate the final image by averaging the representations

Non-local Sparse Image Models											
Denoising results, synthetic noise											
Average PSNR on 10 standard images (higher is better)											
σ	GSM	FOE	KSVD	BM3D	SC	LSC	LSSC				
5	37.05	37.03	37.42	37.62	37.46	37.66	37.67				
10	33.34	33.11	33.62	34.00	33.76	33.98	34.06				
15	31.31	30.99	31.58	32.05	31.72	31.99	32.12				
20	29.91	29.62	30.18	30.73	30.29	30.60	30.78				
25	28.84	28.36	29.10	29.72	29.18	29.52	29.74				
50	25.66	24.36	25.61	26.38	25.83	26.18	26.57				
100	22.80	21.36	22.10	23.25	22.46	22.62	23.39				
							,				
Improvement over BM3D is significant only for large values of σ											
The comparison is made with CSM (Causeian Scale Mixture) Dertille											
et al. [2003], FOE (Field of Experts) Roth and Black [2005], KSVD Elad											
and Aharon [2006] and BM3D Dabov et al. [2007].											
く日 > 〈四 > 〈四 > 〈四 > 〈日 > 〉											

Non-local Sparse Image Models Denoising results, synthetic noise

Non-local Sparse Image Models Demosaicking results, Kodak database Average PSNR on the Kodak dataset (24 images)										
	Im.	AP	DL	LPA	SC	LSC	LSSC			
	Av.	39.21	40.05	40.52	40.88	41.13	41.39			
The co et al. [2 known	mparisc 2002], [result c	on is mac DL Zhang on this da	le with A g and W atabase)	AP (Alte u [2005]	rnative F and LPA	Projectio A Paliy e	ns) Guntu t al. [2007	rk] (best		
			Julien I	Mairal Sp	arse Coding ar	nd Dictionary	Learning	83/182		

Structured Sparsity

[Jenatton et al., 2009]

Case of general overlapping groups.

When penalizing by the ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathcal{G}} \|\boldsymbol{\alpha}_{G}\|_{2} = \sum_{G \in \mathcal{G}} \big(\sum_{j \in G} \alpha_{j}^{2}\big)^{1/2}$$

- \bullet The ℓ_1 norm induces sparsity at the group level:
 - Some α_G 's are set to zero.
- Inside the groups, the ℓ_2 norm does not promote sparsity.

lien Mairal

- Intuitively, variables belonging to the same groups are encouraged to be set to zero together.
- Optimization via reweighted least-squares, proximal methods, etc...

Sparse Coding and Dictionary Learning

Wavelet denoising with hierarchical norms [Jenatton, Mairal, Obozinski, and Bach, 2010b]

Classical wavelet denoising [Donoho and Johnstone, 1995]:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{\rho}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

When **D** is orthogonal, the solution is obtained via **soft-thresholding**.

Wavelet denoising with hierarchical norms [Jenatton, Mairal, Obozinski, and Bach, 2010b]

		Haar			
	σ	ℓ_0	ℓ_1	Ω_{ℓ_2}	Ω_{ℓ_∞}
PSNR	5	34.48	35.52	35.89	35.79
	10	29.63	30.74	31.40	31.23
	25	24.44	25.30	26.41	26.14
	50	21.53	20.42	23.41	23.05
	100	19.27	19.43	20.97	20.58
IPSNR	5	-	$1.04\pm.31$	$1.41\pm.45$	$1.31\pm.41$
	10	-	$1.10\pm.22$	$1.76\pm.26$	$1.59\pm.22$
	25	-	$.86\pm.35$	$1.96 \pm .22$	$1.69\pm.21$
	50	-	$.46\pm.28$	$1.87 \pm .20$	$1.51\pm.20$
	100	-	$.15\pm.23$	$1.69\pm.19$	$1.30\pm.19$
				< • • • • • • • • • • • • • • • • • • •	→ E → < E →
Julien Mairal Sparse Coding and Dictionary Learning					

Benchmark on a database of 12 standard images:

Application to patch reconstrution

[Jenatton, Mairal, Obozinski, and Bach, 2010a]

- Reconstruction of 100,000 8×8 natural images patches
 - Remove randomly subsampled pixels
 - Reconstruct with matrix factorization and structured sparsity

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

Learning Codebooks for Image Classification

Let an image be represented by a set of low-level descriptors \mathbf{y}_i at N locations identified with their indices i = 1, ..., N.

• hard-quantization:

$$\mathbf{y}_i pprox \mathbf{D} oldsymbol{lpha}_i, \quad oldsymbol{lpha}_i \in \{0,1\}^p \; \; ext{and} \; \; \; \sum_{j=1}^p oldsymbol{lpha}_i[j] = 1$$

• soft-quantization:

$$\boldsymbol{\alpha}_{i}[j] = \frac{e^{-\beta \|\mathbf{y}_{i}-\mathbf{d}_{j}\|_{2}^{2}}}{\sum_{k=1}^{p} e^{-\beta \|\mathbf{y}_{i}-\mathbf{d}_{k}\|_{2}^{2}}}$$

• sparse coding:

$$\mathbf{y}_i \approx \mathbf{D}\boldsymbol{\alpha}_i, \quad \boldsymbol{\alpha}_i = \arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \|\mathbf{y}_i - \mathbf{D}\boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

ien Mairal

Learning Codebooks for Image Classification

Table from Boureau et al. [2010]

Method	Caltech-101, 30 training examples Average Pool Max Pool			15 Scenes, 100 training examples Average Pool Max Pool			
	-	Results with b	sic features.	SIFT extra	cted each 8 p	oixels	
Hard quantization, linear kernel	51.4 ± 0.9 [256]	64.3 ± 0.9	[256]	$73.9 \pm 0.$	9 1024]	$80.1 \pm 0.6[1024]$	
Hard quantization, intersection kernel	64.2 ± 1.0 [256]	(1) 64.3 ± 0.9	[256]	$80.8 \pm 0.$	4 [256] (1)	$80.1 \pm 0.6 [1024]$	
Soft quantization, linear kernel	57.9 ± 1.5 [1024	$1 69.0 \pm 0.8$	[256]	$75.6 \pm 0.$	5 [1024]	81.4 ± 0.6 [1024]	
Soft quantization, intersection kernel	66.1 ± 1.2 [512]	(2) 70.6 + 1.0	[1024]	$81.2 \pm 0.$	4 1024 (2)	$83.0 \pm 0.7 [1024]$	
Sparse codes, linear kernel	61.3 ± 1.3 [1024] 71.5⊥1.	L [1024] (3)	76.9 <u>1</u> 0.	6 [1024]	83.1 ± 0.6 [1024] (3)	
Sparse codes, intersection kernel	$70.3 \pm 1.3 1024$	71.8 + 1.0) 1024 (4)	$83.2 \pm 0.$	4 1024	84.1 + 0.5 1024 (4)	
	Results with macrofeatures and denser SIFT sampling						
Hard quantization, linear kernel	55.6 ± 1.6 [256]	70.9 ± 1.0	[1024]	74.0 ⊥ 0.	5 [1024]	80.1 ± 0.5 [1024]	
Hard quantization, intersection kernel	68.8 ± 1.4 [512]	70.9 ± 1.0	[1024]	$81.0 \pm 0.$	5 1024	$80.1 \pm 0.5 [1024]$	
Soft quantization, linear kernel	61.6 ± 1.6 [1024	$1 71.5 \pm 1.0$	[1024]	$76.4 \pm 0.$	7 [1024]	81.5 1 0.4 [1024]	
Soft quantization, intersection kernel	70.1 ± 1.311024	$ 73.2 \pm 1.0$	110241	$81.8 \pm 0.$	4 1024	83.0 ± 0.4 [1024]	
Sparse codes, linear kernel	65.7 ± 1.4 [1024	75.1 ± 0.9	0 [1024]	78.2 ± 0.	7 [1024]	83.6 ± 0.4 [1024]	
Sparse codes, intersection kernel	73.7 ± 1.3 [1024] 75.7⊥1	L [1024]	83.5 ± 0.	4 [1024]	84.3 ± 0.5 [1024]	
	·			AH.			
		Unsup	Discr				
	Linear	83.6 ± 0.4	$84.9 \pm$	0.3			
	Intersect	919 L 0 F	847	0.4			
	mersect	04.3 ± 0.3	04.1 1	0.4			
	04						
ang et al [2009] hay	ve won th	e PASCA	I VOC	'09 cl	halleng	e using this	
			00		i an chig	e asing tins	
ind of techniques.							

Learning dictionaries with a discriminative cost function

Idea:

Let us consider 2 sets S_-, S_+ of signals representing 2 different classes. Each set should admit a dictionary best adapted to its reconstruction.

Classification procedure for a signal $\mathbf{y} \in \mathbb{R}^n$:

$$\min(\mathbf{R}^{\star}(\mathbf{y},\mathbf{D}_{-}),\mathbf{R}^{\star}(\mathbf{y},\mathbf{D}_{+}))$$

where

$$\mathsf{R}^{\star}(\mathsf{y},\mathsf{D}) = \min_{\alpha \in \mathbb{R}^p} \|\mathsf{y} - \mathsf{D}\alpha\|_2^2 \text{ s.t. } \|\alpha\|_0 \leq L.$$

"Reconstructive" training

 $\left\{ \begin{array}{l} \min_{\mathbf{D}_{-}} \sum_{i \in S_{-}} \mathbf{R}^{\star}(\mathbf{y}_{i}, \mathbf{D}_{-}) \\ \min_{\mathbf{D}_{+}} \sum_{i \in S_{+}} \mathbf{R}^{\star}(\mathbf{y}_{i}, \mathbf{D}_{+}) \end{array} \right.$

[Grosse et al., 2007], [Huang and Aviyente, 2006], [Sprechmann et al., 2010b] for unsupervised clustering (CVPR '10)

Julien Mairal

105/182

Sparse Coding and Dictional

Application to edge detection and classification Performance gain due to the prefiltering

Ours + [Leordeanu '07]	[Leordeanu '07]	[Winn '05]
96.8%	89.4%	76.9%

Recognition rates for the same experiment as [Winn et al., 2005] on VOC 2005.

Category	Ours+[Leordeanu '07]	[Leordeanu '07]
Aeroplane	71.9%	61.9%
Boat	67.1%	56.4%
Cat	82.6%	53.4%
Cow	68.7%	59.2%
Horse	76.0%	67%
Motorbike	80.6%	73.6%
Sheep	72.9%	58.4%
Tvmonitor	87.7%	83.8%
Average	75.9%	64.2 %

Recognition performance at equal error rate for 8 classes on a subset of images from Pascal 07.

Julien Mairal

Next topics

• Optimization for solving sparse decomposition problems

n Maira

• Optimization for dictionary learning

parse Coding and Dictionary Lea

Matching Pursuit $\min_{\alpha \in \mathbb{R}^p} \| \underbrace{\mathbf{y} - \mathbf{D}\alpha}_{\mathbf{r}} \|_2^2 \text{ s.t. } \| \boldsymbol{\alpha} \|_0 \leq L$ 1: $\alpha \leftarrow 0$ 2: $\mathbf{r} \leftarrow \mathbf{y}$ (residual).3: while $\| \boldsymbol{\alpha} \|_0 < L$ do4: Select the atom with maximum correlation with the residual $\hat{\mathbf{r}} \leftarrow \arg\max_{i=1,\dots,p} | \mathbf{d}_i^T \mathbf{r} |$ 5: Update the residual and the coefficients $\boldsymbol{\alpha}[\hat{\imath}] \leftarrow \boldsymbol{\alpha}[\hat{\imath}] + \mathbf{d}_i^T \mathbf{r} |$ $\mathbf{r} \leftarrow \mathbf{r} - (\mathbf{d}_i^T \mathbf{r}) \mathbf{d}_i$ 6: end while

Orthogonal Matching Pursuit

Contrary to MP, an atom can only be selected one time with OMP. It is, however, more difficult to implement efficiently. The keys for a good implementation in the case of a large number of signals are

- Precompute the Gram matrix $\mathbf{G} = \mathbf{D}^T \mathbf{D}$ once in for all,
- Maintain the computation of $\mathbf{D}^T \mathbf{r}$ for each signal,
- Maintain a Cholesky decomposition of $(\mathbf{D}_{\Gamma}^{T}\mathbf{D}_{\Gamma})^{-1}$ for each signal.

The total complexity for decomposing n *L*-sparse signals of size m with a dictionary of size p is

$$\underbrace{O(p^2m)}_{\text{Gram matrix}} + \underbrace{O(nL^3)}_{\text{Cholesky}} + \underbrace{O(n(pm + pL^2))}_{\mathbf{D}^{\mathsf{T}}\mathbf{r}} = O(np(m + L^2))$$

It is also possible to use the matrix inversion lemma instead of a Cholesky decomposition (same complexity, but less numerical stability)

Optimality conditions of the Lasso

Nonsmooth optimization

Directional derivatives and subgradients are useful tools for studying $\ell_1\text{-}decomposition$ problems:

$$\min_{oldsymbol{lpha} \in \mathbb{R}^{
ho}} \; rac{1}{2} \| oldsymbol{y} - oldsymbol{\mathsf{D}} oldsymbol{lpha} \|_2^2 + \lambda \| oldsymbol{lpha} \|_1$$

In this tutorial, we use the **directional derivatives** to derive simple optimality conditions of the Lasso.

For more information on convex analysis and nonsmooth optimization, see the following books: [Boyd and Vandenberghe, 2004], [Nocedal and Wright, 2006], [Borwein and Lewis, 2006], [Bonnans et al., 2006], [Bertsekas, 1999].

n Mairal

Optimality conditions of the Lasso

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^p} \ \frac{1}{2} \| \mathbf{y} - \mathbf{D} \boldsymbol{\alpha} \|_2^2 + \lambda \| \boldsymbol{\alpha} \|_1$$

 $lpha^{\star}$ is optimal iff for all ${f u}$ in ${\mathbb R}^p$, $abla f(lpha,{f u})\geq 0$ —that is,

$$-\mathbf{u}^{\mathsf{T}}\mathbf{D}^{\mathsf{T}}(\mathbf{y}-\mathbf{D}\boldsymbol{\alpha}^{\star})+\lambda\sum_{i,\boldsymbol{\alpha}^{\star}[i]\neq 0}\mathsf{sign}(\boldsymbol{\alpha}^{\star}[i])\mathbf{u}[i]+\lambda\sum_{i,\boldsymbol{\alpha}^{\star}[i]=0}|\mathbf{u}_{i}|\geq 0,$$

which is equivalent to the following conditions:

$$\forall i = 1, \dots, p, \quad \begin{cases} |\mathbf{d}_i^T(\mathbf{y} - \mathbf{D}\alpha^*)| \leq \lambda & \text{if } \alpha^*[i] = 0 \\ \mathbf{d}_i^T(\mathbf{y} - \mathbf{D}\alpha^*) = \lambda \operatorname{sign}(\alpha^*[i]) & \text{if } \alpha^*[i] \neq 0 \end{cases}$$

Mairal

Sparse Coding and Dictionary Learn

Homotopy

- A homotopy method provides a set of solutions indexed by a parameter.
- The regularization path $(\lambda, \alpha^*(\lambda))$ for instance!!
- It can be useful when the path has some "nice" properties (piecewise linear, piecewise quadratic).
- LARS [Efron et al., 2004] starts from a trivial solution, and follows the regularization path of the Lasso, which is is **piecewise linear**.

Sparse Coding and Dictionary L

Homotopy, LARS

[Osborne et al., 2000], [Efron et al., 2004]

$$\forall i = 1, \dots, p, \quad \begin{cases} |\mathbf{d}_i^T(\mathbf{y} - \mathbf{D}\boldsymbol{\alpha}^*)| \leq \lambda & \text{if } \boldsymbol{\alpha}^*[i] = 0\\ \mathbf{d}_i^T(\mathbf{y} - \mathbf{D}\boldsymbol{\alpha}^*) = \lambda \operatorname{sign}(\boldsymbol{\alpha}^*[i]) & \text{if } \boldsymbol{\alpha}^*[i] \neq 0 \end{cases}$$
(5)

The regularization path is piecewise linear:

$$\begin{split} \mathbf{D}_{\Gamma}^{T}(\mathbf{y} - \mathbf{D}_{\Gamma}\alpha_{\Gamma}^{\star}) &= \lambda \operatorname{sign}(\alpha_{\Gamma}^{\star}) \\ \alpha_{\Gamma}^{\star}(\lambda) &= (\mathbf{D}_{\Gamma}^{T}\mathbf{D}_{\Gamma})^{-1}(\mathbf{D}_{\Gamma}^{T}\mathbf{y} - \lambda \operatorname{sign}(\alpha_{\Gamma}^{\star})) = \mathbf{A} + \lambda \mathbf{B} \end{split}$$

A simple interpretation of LARS

- Start from the trivial solution $(\lambda = \|\mathbf{D}^T \mathbf{y}\|_{\infty}, \alpha^*(\lambda) = 0).$
- Maintain the computations of $|\mathbf{d}_i^T(\mathbf{y} \mathbf{D}\alpha^*(\lambda))|$ for all *i*.
- Maintain the computation of the current direction **B**.
- Follow the path by reducing λ until the next kink.

Coordinate Descent

- Coordinate descent + nonsmooth objective: WARNING: not convergent in general
- Here, the problem is equivalent to a convex smooth optimization problem with separable constraints

$$\min_{\boldsymbol{\alpha}_{+},\boldsymbol{\alpha}_{-}}\frac{1}{2}\|\mathbf{y}-\mathbf{D}_{+}\boldsymbol{\alpha}_{+}+\mathbf{D}_{-}\boldsymbol{\alpha}_{-}\|_{2}^{2}+\lambda\boldsymbol{\alpha}_{+}^{T}\mathbf{1}+\lambda\boldsymbol{\alpha}_{-}^{T}\mathbf{1} \text{ s.t. } \boldsymbol{\alpha}_{-},\boldsymbol{\alpha}_{+}\geq 0.$$

• For this **specific** problem, coordinate descent is **convergent**.

n Mairal

• Supposing $\|\mathbf{d}_i\|_2 = 1$, updating the coordinate *i*:

$$\alpha[i] \leftarrow \arg\min_{\beta} \frac{1}{2} \| \mathbf{y} - \sum_{j \neq i} \alpha[j] \mathbf{d}_{j} - \beta \mathbf{d}_{i} \|_{2}^{2} + \lambda |\beta|$$

$$\leftarrow \operatorname{sign}(\mathbf{d}_{i}^{T} \mathbf{r})(|\mathbf{d}_{i}^{T} \mathbf{r}| - \lambda)^{+}$$

Sparse Coding and Dictionary Lear

• \Rightarrow soft-thresholding!

First-order/proximal methods

$$\min_{\alpha \in \mathbb{R}^p} f(\alpha) + \lambda \Omega(\alpha)$$

- *f* is strictly convex and differentiable with a Lipshitz gradient.
- Generalizes the idea of gradient descent

$$\alpha^{k+1} \leftarrow \underset{\alpha \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \underbrace{\frac{f(\alpha^{k}) + \nabla f(\alpha^{k})^{\top}(\alpha - \alpha^{k})}{\operatorname{linear approximation}}}_{\operatorname{quadratic term}} + \underbrace{\frac{L}{2} \|\alpha - \alpha^{k}\|_{2}^{2}}_{\operatorname{quadratic term}} + \lambda \Omega(\alpha)$$

$$\leftarrow \underset{\alpha \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \frac{1}{2} \|\alpha - (\alpha^{k} - \frac{1}{L} \nabla f(\alpha^{k}))\|_{2}^{2} + \frac{\lambda}{L} \Omega(\alpha)$$

Sparse Coding and Dictionary Learn

158/182

When
$$\lambda = 0$$
, $\alpha^{k+1} \leftarrow \alpha^k - \frac{1}{L} \nabla f(\alpha^k)$, this is equivalent to a classical gradient descent step.

n Mairal

First-order/proximal methods

• They require solving efficiently the proximal operator

$$\min_{oldsymbol{lpha} \in \mathbb{R}^p} \; rac{1}{2} \| oldsymbol{\mathsf{u}} - oldsymbol{lpha} \|_2^2 + \lambda \Omega(oldsymbol{lpha})$$

 $\bullet\,$ For the $\ell_1\text{-norm},$ this amounts to a soft-thresholding:

Julien Mairal

$$\alpha_i^\star = \operatorname{sign}(\mathbf{u}_i)(\mathbf{u}_i - \lambda)^+.$$

- There exists accelerated versions based on Nesterov optimal first-order method (gradient method with "extrapolation") [Beck and Teboulle, 2009, Nesterov, 2007, 1983]
- suited for large-scale experiments.

Sparse Coding and Dictionary Learn

Empirical comparison: conclusions Lasso Generic methods very slow LARS fastest in low dimension or for high correlation Proximal methods competitive esp. larger setting with weak corr. + weak reg. Coordinate descent Dominated by the LARS Would benefit from an offline computation of the matrix Smooth Losses LARS not available → CD and proximal methods good candidates

en Mairal

Sparse Coding and Dictionary Learning

Optimization for Grouped Sparsity

The proximal operator:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^p} \frac{1}{2} \| \mathbf{u} - \boldsymbol{\alpha} \|_2^2 + \lambda \sum_{g \in \mathcal{G}} \| \boldsymbol{\alpha}_g \|_q$$

For q = 2,

$$oldsymbol{lpha}_{g}^{\star} = rac{\mathbf{u}_{g}}{\|\mathbf{u}_{g}\|_{2}} (\|\mathbf{u}_{g}\|_{2} - \lambda)^{+}, \hspace{0.2cm} orall g \in \mathcal{G}$$

For $q = \infty$,

$$\alpha_g^{\star} = \mathbf{u}_g - \Pi_{\parallel \cdot \parallel_1 \leq \lambda}[\mathbf{u}_g], \ \forall g \in \mathcal{G}$$

These formula generalize soft-thrsholding to groups of variables. They are used in block-coordinate descent and proximal algorithms.

Julien Mairal

< 3 >

2

3

165/182

164/182

A

Sparse Coding and Dictionary Learning

Reweighted ℓ_2

Let us start from something simple

$$a^2-2ab+b^2\geq 0.$$

Then

$$a \leq rac{1}{2} \Big(rac{a^2}{b} + b \Big)$$
 with equality iff $a = b$

and

$$\|\alpha\|_1 = \min_{\eta_j \ge 0} \frac{1}{2} \sum_{j=1}^p \frac{\alpha[j]^2}{\eta_j} + \eta_j.$$

The formulation becomes

$$\min_{\boldsymbol{\alpha},\eta_j \geq \varepsilon} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\boldsymbol{\alpha}\|_2^2 + \frac{\lambda}{2} \sum_{j=1}^p \frac{\boldsymbol{\alpha}[j]^2}{\eta_j} + \eta_j.$$

Julien Mairal

Sparse Coding and Dictionary Learning

Important messages

- $\bullet\,$ Greedy methods directly address the NP-hard $\ell_0\text{-decomposition}$ problem.
- Homotopy methods can be extremely efficient for small or medium-sized problems, or when the solution is very sparse.
- Coordinate descent provides in general quickly a solution with a small/medium precision, but gets slower when there is a lot of correlation in the dictionary.
- First order methods are very attractive in the large scale setting.
- Other good alternatives exists, active-set, reweighted ℓ_2 methods, stochastic variants, variants of OMP, . . .

Optimization for Dictionary Learning [Mairal, Bach, Ponce, and Sapiro, 2009a]

Classical formulation of dictionary learning

$$\min_{\mathbf{D}\in\mathcal{C}}f_n(\mathbf{D})=\min_{\mathbf{D}\in\mathcal{C}}\frac{1}{n}\sum_{i=1}^n I(\mathbf{y}_i,\mathbf{D}),$$

where

$$\mathcal{U}(\mathbf{x},\mathbf{D}) \stackrel{\scriptscriptstyle{\Delta}}{=} \min_{\boldsymbol{lpha} \in \mathbb{R}^p} rac{1}{2} \|\mathbf{y} - \mathbf{D}\boldsymbol{lpha}\|_2^2 + \lambda \|\boldsymbol{lpha}\|_1.$$

Which formulation are we interested in?

$$\min_{\mathbf{D}\in\mathcal{C}}\left\{f(\mathbf{D})=\mathbb{E}_{\mathbf{y}}[l(\mathbf{y},\mathbf{D})]\approx\lim_{n\to+\infty}\frac{1}{n}\sum_{i=1}^{n}l(\mathbf{y}_{i},\mathbf{D})\right\}$$

[Bottou and Bousquet, 2008]: Online learning can

• handle potentially infinite or dynamic datasets,

Julien Mairal

• be dramatically faster than batch algorithms. Sparse Coding and Dicti

Optimization for Dictionary Learning **Require:** $\mathbf{D}_0 \in \mathbb{R}^{m \times p}$ (initial dictionary); $\lambda \in \mathbb{R}$ 1: $\mathbf{A}_0 = 0, \ \mathbf{B}_0 = 0.$ 2: for $t=1,\ldots,T$ do 3: Draw \mathbf{y}_t 4: Sparse Coding: $\alpha_t \leftarrow \underset{\alpha \in \mathbb{R}^p}{\arg\min} \frac{1}{2} \| \mathbf{y}_t - \mathbf{D}_{t-1} \alpha \|_2^2 + \lambda \| \alpha \|_1$, 5: Aggregate sufficient statistics $\mathbf{A}_t \leftarrow \mathbf{A}_{t-1} + lpha_t lpha_t^T$, $\mathbf{B}_t \leftarrow \mathbf{B}_{t-1} + \mathbf{y}_t lpha_t^T$ 6: Dictionary Update (block-coordinate descent) $\mathbf{D}_t \quad \leftarrow \arg\min_{\mathbf{D}\in\mathcal{C}} \frac{1}{t} \sum_{i=1}^t \left(\frac{1}{2} \| \mathbf{y}_i - \mathbf{D} \boldsymbol{\alpha}_i \|_2^2 + \lambda \| \boldsymbol{\alpha}_i \|_1 \right).$ (6) $= \operatorname{arg\,min}_{\mathbf{D}\in\mathcal{C}} \frac{1}{t} \Big(\frac{1}{2} \operatorname{Tr}(\mathbf{D}^{\mathsf{T}} \mathbf{D} \mathbf{A}_t) - \operatorname{Tr}(\mathbf{D}^{\mathsf{T}} \mathbf{B}_t) \Big).$ (7)7: end for

Optimization for Dictionary Learning

Which guarantees do we have?

Under a few reasonable assumptions,

• we build a surrogate function \hat{f}_t of the expected cost f verifying

$$\lim_{t\to+\infty}\hat{f}_t(\mathbf{D}_t)-f(\mathbf{D}_t)=0$$

• **D**_t is asymptotically close to a stationary point.

Extensions (all implemented in SPAMS)

- non-negative matrix decompositions.
- sparse PCA (sparse dictionaries).
- fused-lasso regularizations (piecewise constant dictionaries)

References I

- M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. *IEEE Transactions on Signal Processing*, 54(11):4311–4322, November 2006.
- F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2008.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- D. P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, Mass, 1999.
- D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. *Journal of Machine Learning Research*, 3:993–1022, January 2003.
- D. Blei, T. Griffiths, and M. Jordan. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. *Journal of the ACM*, 57(2): 1–30, 2010.
- J.F. Bonnans, J.C. Gilbert, C. Lemarechal, and C.A. Sagastizabal. *Numerical optimization: theoretical and practical aspects.* Springer-Verlag New York Inc, 2006.

Julien Mairal

References II

- J. M. Borwein and A. S. Lewis. *Convex analysis and nonlinear optimization: Theory and examples.* Springer, 2006.
- L. Bottou and O. Bousquet. The trade-offs of large scale learning. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, *Advances in Neural Information Processing Systems*, volume 20, pages 161–168. MIT Press, Cambridge, MA, 2008.
- Y-L. Boureau, F. Bach, Y. Lecun, and J. Ponce. Learning mid-level features for recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2010.
- S. P. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- A. Buades, B. Coll, and J.M. Morel. A review of image denoising algorithms, with a new one. *SIAM Multiscale Modelling and Simulation*, 4(2):490–530, 2006.
- A. Buades, B. Coll, J.-M. Morel, and C Sbert. Self-similarity driven color demosaicking. *IEEE Transactions on Image Processing*, 18(6):1192–1202, 2009.
- E. Candes. Compressive sampling. In *Proceedings of the International Congress of Mathematicians*, volume 3, 2006.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Journal on Scientific Computing*, 20:33–61, 1999.

Sparse Coding and Dictionary Lear

Julien Mairal

References III

- K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. *IEEE Transactions on Image Processing*, 16(8):2080–2095, 2007.
- Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Comm. Pure Appl. Math*, 57: 1413–1457, 2004.
- I. Daubechies, R. DeVore, M. Fornasier, and S. Gunturk. Iteratively re-weighted least squares minimization for sparse recovery. *Commun. Pure Appl. Math*, 2009.
- D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. *Journal of the American Statistical Association*, 90(432):1200–1224, 1995.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. *Annals of statistics*, 32(2):407–499, 2004.
- A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1999.

Julien Mairal

Sparse Coding and Dictionary Learn

175/182

References IV

- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 54(12): 3736–3745, December 2006.
- K. Engan, S. O. Aase, and J. H. Husoy. Frame based signal compression using method of optimal directions (MOD). In *Proceedings of the 1999 IEEE International Symposium on Circuits Systems*, volume 4, 1999.
- J. Friedman, T. Hastie, H. Hölfling, and R. Tibshirani. Pathwise coordinate optimization. *Annals of statistics*, 1(2):302–332, 2007.
- W. J. Fu. Penalized regressions: The bridge versus the Lasso. Journal of computational and graphical statistics, 7:397–416, 1998.
- R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant sparse coding for audio classification. In *Proceedings of the Twenty-third Conference on Uncertainty in Artificial Intelligence*, 2007.
- BK Gunturk, Y. Altunbasak, and RM Mersereau. Color plane interpolation using alternating projections. *IEEE Transactions on Image Processing*, 11(9):997–1013, 2002.
- A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 69:331–371, 1910.

References V

- K. Huang and S. Aviyente. Sparse representation for signal classification. In Advances in Neural Information Processing Systems, Vancouver, Canada, December 2006.
- J. M. Hugues, D. J. Graham, and D. N. Rockmore. Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder. *Proceedings of the National Academy of Science, TODO USA*, 107(4):1279–1283, 2009.
- R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, 2009. preprint arXiv:0904.3523v1.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2010a.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. Technical report, 2010b. submitted, arXiv:1009.3139.
- D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In *Advances in Neural Information Processing Systems*, 2001.

Julien Mairal

 H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In
 B. Schölkopf, J. Platt, and T. Hoffman, editors, *Advances in Neural Information Processing Systems*, volume 19, pages 801–808. MIT Press, Cambridge, MA, 2007.

- A

Sparse Coding and Dictionary Learning

References VI

- M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appearance: Category recognition from pairwise interactions of simple features. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2007.
- M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Computation, 12(2):337–365, 2000.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2008a.
- J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. *IEEE Transactions on Image Processing*, 17(1):53–69, January 2008b.
- J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discriminative sparse image models for class-specific edge detection and image interpretation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2008c.
- J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Modelling and Simulation, 7(1): 214–241, April 2008d.

and Dictionary Lear

n Mairal

References VII

- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In *Proceedings of the International Conference on Machine Learning* (*ICML*), 2009a.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2009b.
- S. Mallat. A Wavelet Tour of Signal Processing, Second Edition. Academic Press, New York, September 1999.
- S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary. *IEEE Transactions on Signal Processing*, 41(12):3397–3415, 1993.
- H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly*, 3:111–133, 1956.
- N. Meinshausen and P. Buehlmann. Stability selection. *Journal of the Royal Statistical Society, Series B*, 2010. to appear.
- Y. Nesterov. A method for solving a convex programming problem with convergence rate $O(1/k^2)$. Soviet Math. Dokl., 27:372–376, 1983.
- Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, CORE, 2007.

Julien Mairal

Sparse Coding and Dictionary Learni

References VIII

- J. Nocedal and SJ Wright. *Numerical Optimization*. Springer: New York, 2006. 2nd Edition.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. *Journal of Computational and Graphical Statistics*, 9(2):319–37, 2000.
- D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius, and K. Egiazarian. Spatially adaptive color filter array interpolation for noiseless and noisy data. *Intern. J. of Imaging Sys. and Tech.*, 17(3), 2007.
- J. Portilla, V. Strela, MJ Wainwright, and EP Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. *IEEE Transactions on Image Processing*, 12(11):1338–1351, 2003.
- M. Protter and M. Elad. Image sequence denoising via sparse and redundant representations. *IEEE Transactions on Image Processing*, 18(1):27–36, 2009.
- S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), 2005.

References IX

- V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2008.
- P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar. Collaborative hierarchical sparse modeling. Technical report, 2010a. Preprint arXiv:1003.0400v1.
- P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar. Collaborative hierarchical sparse modeling. Technical report, 2010b. Preprint arXiv:1003.0400v1.
- R. Tibshirani. Regression shrinkage and selection via the Lasso. *Journal of the Royal Statistical Society. Series B*, 58(1):267–288, 1996.
- S. Weisberg. Applied Linear Regression. Wiley, New York, 1980.
- J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2005.
- J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2009.

Julien Mairal

Sparse Coding and Dictionary Learni

References X

- J. Yang, K. Yu, , and T. Huang. Supervised translation-invariant sparse coding. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), 2010.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society Series B*, 68:49–67, 2006.
- L. Zhang and X. Wu. Color demosaicking via directional linear minimum mean square-error estimation. *IEEE Transactions on Image Processing*, 14(12): 2167–2178, 2005.

Julien Mairal

A

Sparse Coding and Dictionary Learning

< 30

э

182/182

Sébastien PARIS

LSIS / Univ. Med. / DYNI <u>http://www.lsis.org/spip.php?id_rubrique=28</u> <u>http://www.mathworks.com/matlabcentral/fileexchange/authors/13308</u>

"Reconnaissance de Scènes & Robotique avec Vision Embarquée "

Cette présentation liée au challenge RobotVision@ICPR 2010 fait un tour d'horizon de la chaîne complète de traitement et des différentes techniques (basées sur de la vision et du machine learning) dédiées à la tache de catégorisation (dynamique) de scènes d'intérieur.

Ce tour d'horizon commencera par une revue des descripteurs locaux/globaux utilisés (LBP, spHOG, SIFT, etc...), des techniques d'encodage des descripteurs en dictionnaires visuels (VQ, soft VQ, Sparse Coding, etc...), en passant par les classifieurs à vastes marges dédiés aux grandes échelles (FastIKSVM, Liblinear, etc...) sur noyaux potentiellement multiples (MKL, GMKL, etc...).

Nous montrons comment intégrer à cet ensemble la dynamique de l'état (approche HMM, particulaire, etc...), et abouti au meilleur modèle de localisation robotique dans le challenge ImageClef ICPR 2010.

Références :

Sébastien Paris, Hervé Glotin, "PyramidalMulti-Level Features for the RobotVision@ICPR 2010 Challenge", pp. 1-4, ICPR'2010, Turkey, 2010

Sébastien Paris, Hervé Glotin, "Linear SVM for new Pyramidal Multi-Level Visual only Concept", CLEF (Notebook Papers/LABs/Workshops), http://clef2010.org/resources/proceedings/clef2010labs_submission_118.pdf, 2010

The object car Class	egory classifica	ion results in AUC for the SIFT descriptor and for eight different CS-LBP descriptors										
C1453	SIFT	CS-LBP: W = W	$u_{0}, T = 0.01$			M-2						
		M = 4	P.N. 1.P	P.N - 7.6	P.N. 1.6	M = 3	P.N. 1.9	PM DE	P M T C			
		<i>n</i> , <i>n</i> = 2, o	R, N = 1, 0	R,N = 2.0	K,IV = 1,0	K, JV = 2, 0	n,n = 1,0	n, N = 2, 0	N, IX = 1,0			
Bicycle	0.9191	0.9167	0.9171	0.9029	0.9007	0.9220	0,9143	0.9067	0.9077			
Bus	0.9726	0.9/31	0.9/45	0.9738	0.9712	0.9727	0.9740	0.9699	0.9690			
Lar	0.9595	0.9665	0.9665	0.9682	0.96/2	0.9645	0.9675	0.9644	0,9660			
Cat	0.8824	0.8883	0.8838	0.8829	0.8921	0.8853	0.8822	0.8827	0.8845			
Cow	0.8967	0.9155	0.9113	0.9077	0.9138	0.9059	0.9128	0.9113	0,9091			
Dog	0.8192	0.8317	0,8303	0.8254	0.8350	0.8363	0.8384	0.8274	0.8299			
Horse	0.8449	0.8869	0.8932	0.8879	0.8948	0.9036	0.8794	0.8911	0.8763			
Motorbike	0.9391	0.9502	0.9523	0.9346	0.9419	0.9397	0.9515	0.9264	0.9409			
Person	0.8068	0.8193	0.8295	0.8079	0.8172	0.8131	0.8200	0.8083	0.8118			
Sheep	0.8959	0.9197	0.9241	0.9207	0.9176	0.9231	0.9197	0.9235	0.9199			
Mann												
Abbreviations:	0.8936 M, Cartesian gri	0.9068 d size: W.weightin	0.9083 ig method; W ₀ , u	0.9012 niform; (R.N.T).	0.9052 CS-LBP operator pa	0.9066 rameters.	0.9060	0.9012	0.9015			
nean Abbreviations: The object cat Dass	0.8936 M, Cartesian gri legory classificat LBP: W = $\frac{LBP: W = 4}{M = 4}$	0.9068 d size: W.weightin ion results in AUC Wgs T = 0.01	0.9083 ig method; W ₀ , u for eight differen	0.9012 niform; (R.N.T.) at LBP descripto	0.9052 CS-LBP operator pa rs	0.9066 rameters. M = 3	0.9060	0.9012	0.9015			
nican Abbreviations: The object cat Class	0.8936 M. Cartesian gri legory classificat LBP: W = M = 4 R.N = 2 -	0.9068 d size: W.weightin ion results in AUC W_{0} , $T = 0.01$	0.9083 ng method; W ₀ , u for eight differen	0.9012 niform; (R.N.T) at LBP descripto	0.9052 CS-LBP operator pa rs	0.9066 rameters. <u>M = 3</u> <u>R.N = 2.4</u>	0.9060 R.N = 1.4	0.9012	0.9015 R.N = 1.			
Neari Abbreviations: The object cat Dass	0.8936 M. Cartesian grives tegory classificat $\frac{LBP: W = }{M = 4}$ $R.N = 2,4$	0.9068 d size: W.weightin ion results in AUC W_{lp} , $T = 0.01$ $R_{r}N = 1$.	0.9083 ng method; W ₀ , u for eight differen .4 R,N	0.9012 niform; (R.N.T) at LBP descripto = 2,3	0.9052 CS-LBP operator pa rs R.N = 1, 3	$\frac{M=3}{RN=2.4}$	0.9060 R.N = 1,4	0.9012 R.N = 2, 3	0.9015 R.N = 1,			
Neari Abbreviations: The object cat Dass Dass Necycle	0.8936 M, Cartesian gri legory classificat LBP: $W = \frac{1}{M = 4}$ R, N = 2, 4 0.9268 0.9241	0.9068 d size: W.weightin ion results in AUC W_{lp} , $T = 0.01$ $R_c N = 1$, 0.9217 0.9217	0.9083 ig method; W ₀ , u for eight differen 4 <i>R.N</i> 0.907	0.9012 niform; (R.N.T.) nt LBP descripto = 2,3	0.9052 CS-LBP operator parts rs R, N = 1.3 0.9199 0.9664	$\frac{M = 3}{RN = 2.4}$ 0.9187 0.917	0.9060 R, N = 1, 4 0.9238 0.9718	0.9012 R.N = 2.3 0.9138 0.9556	0.9015 R.N = 1, 0.9219 0.9529			
Noan Abbreviations: The object cat Jass Jass Jicycle Jus Tor	0.8936 M, Cartesian gri egory classificat $\frac{LBP: W = }{M = 4}$ $\frac{0.9268}{0.9741}$	0.9068 d size: W.weightin ion results in AUC W ₀ , T = 0.01 c R,N = 1, 0.9303 0.9717 0.9701	0.9083 ng method; W ₀ , u for eight differen .4 R.N 0.90 0.97	0.9012 niform; (R.N.T) at LBP descripto = 2.3 75	0.9052 CS-LBP operator pa rs R.N = 1.3 0.9199 0.9664 0.9654	0.9066 rameters. M = 3 R.N = 2;4 0.9187 0.9724 0.9584	0.9060 <i>R.N</i> = 1,4 0.9238 0.9718 0.9718	0.9012	0.9015 <i>R.N</i> = 1; 0.9219 0.9629 0.9663			
Nean Abbreviations: The object cat Tass Tass Notes Not	0.8936 M, Cartesian gri egory classificat <u>LBP: W =</u> <u>M = 4</u> <u>R.N = 2,4</u> 0.9268 <u>0.9741</u> 0.9669 0.9869	0.9068 d size: W. weightin ion results in AUC W ₀ , T = 0.01 	0.9083 ig method; W ₀ , u for eight differen .4 R.N 0.907 0.95 0.97	0.9012 niform; (R.N.T), nt LBP descripto = 2, 3 75 11 52 50	0.9052 CS-LBP operator parts rs R,N = 1,3 0.9199 0.9664 0.9656 0.9800	0.9066 rameters.	0.9060 <i>R</i> , <i>N</i> = 1, 4 0.9238 0.9718 0.9718 0.92718	0.9012 <i>R.N</i> = 2.3 0.9138 0.9656 0.9656 0.9632 0.9088	0.9015 <i>R.N</i> = 1, 0.9219 0.9629 0.9663 0.8663			
Abbreviations: The object cal Tlass Ricycle Sus Car Tow	0.8936 M. Cartesian gri egory classificat LBP: W = <u>M = 4</u> <u>R.N = 2,4</u> 0.9268 0.9741 0.9665 0.8969 0.9155	0.9068 d size: W. weightin ion results in AUC W ₀ , T = 0.01 c R.N = 1, 0.9303 0.9717 0.9701 0.9014 0.9215	0.9083 ng method; W ₀ , u for eight differen .4	0.9012 niform; (R.N.T.) nt LBP descripto = 2.3 75 11 52 50 52	0.9052 CS-LBP operator p; rs <i>R</i> .N = 1, 3 0.9199 0.9656 0.8909 0.9155	0.9066 rameters.	0.9960 <i>R,N</i> = 1,4 0.9238 0.9718 0.9716 0.8582 0.9236	0.9012 <i>R.N</i> = 2.3 0.9138 0.9656 0.9652 0.8688 0.9159	0.9015 <i>R.N</i> = 1, 0.9219 0.9663 0.8962 0.9167			
Hobreviations: The object cat Tass Hicycle Sus Car Cat Cat Cat Cat Cat Cat Cat Cat	0.8936 <i>M</i> , Cartesian gri egory classificat $\frac{LBP: W = -\frac{M}{R.N = 2.4}$ 0.9268 0.9268 0.9250 0.8969 0.9156 0.8957	0.9968 d size: W.weightin ion results in AUC W_{0s} , $T = 0.01$ K_{0s} , $T = 0.01$ 0.9203 0.9203 0.9203 0.9717 0.9701 0.9714 0.9715 0.975	0.9083 ng method; W ₀ , u for eight differer 4 R,N 0.907 0.96 0.899 0.81	0.9012 niform; (R.N.T.) nt LBP descripto = 2, 3 75 11 52 50 52 50	0.9052 CS-LBP operator parts rs R.N = 1, 3 0.9199 0.9664 0.9655 0.88909 0.9156 0.9238	0.9066 rameters.	0.9060	0.9012 <i>R.N</i> = 2,3 0.9138 0.9656 0.9652 0.8988 0.9159 0.8794	0.9015 <i>R.N</i> = 1, 0.9219 0.9629 0.9663 0.8962 0.9167 0.9307			
Abbreviations: The object cat Tass Ricycle Sus Car Cow Dog	0.8936 M. Cartesian gri egory classificat <u>M = 4</u> <u>R.N = 2,4</u> 0.9268 0.9268 0.9269 0.8367 0.8357	0.9968 d size: W.weightin ion results in AUC W _{lp} , T = 0.01 d R.N = 1, 0.9303 0.9717 0.9701 0.9215 0.8251 0.8251	0.9083 ng method; W ₀ , u for eight differer .4 R,N 0.907 0.967 0.969 0.969 0.969 0.961	0.9012 niform; (R.N.T.) at LBP descripto = 2, 3 5 5 11 5 2 30 32 10 34	0.9052 CS-LBP operator p; rs R,N = 1,3 0.9199 0.9654 0.8909 0.9156 0.8339 0.9248	0.9066 rameters.	0.9060 R.N = 1,4 0.9238 0.9718 0.9718 0.9716 0.9882 0.99239 0.9449 0.9944	0.9012 R.N = 2.3 0.9138 0.9556 0.9552 0.9532 0.9159 0.8324 0.972	R.N = 1; 0.9015 R.N = 1; 0.9219 0.9663 0.8962 0.9167 0.8397 0.8397			
Nean Abbreviations: The object cat allass Nicycle Sus ar ar ar ar ar ar ar ar ar ar ar ar ar	0.8936 M. Cartesian gri egory classificat IBP: W = M = 4 R.N = 2,4 0.9268 0.92741 0.9685 0.8857 0.8857 0.8877	0.9968 d size: W.weightin ion results in AUC W ₀ , T = 0.01 d R.N = 1. 0.9303 0.9717 0.9701 0.9701 0.9715 0.8877 0.8874	0.9083 ng method; W ₀ , u for eight differer .4 & R.N 0.907 0.95 0.859 0.97 0.95 0.859 0.97 0.96 0.859 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.96 0.97	0.9012 niform; (R.N.T). nt LBP descripto = 2, 3 75 75 75 75 75 75 75 75 75 75	0.9052 CS-LBP operator p; rs R,N = 1, 3 0.9199 0.9564 0.9556 0.9556 0.9156 0.9323 0.8325 0.8355 0.83555 0.83555 0.83555 0.83555 0.83555 0.83555 0.83555 0.83555 0.83555 0.83555 0.83555 0.835555 0.835555 0.8355555 0.83555555 0.83555555555555555555555555555555555555	0.9066 rameters. M = 3 R.N = 2,4 0.9187 0.9724 0.9724 0.9584 0.05817 0.9236 0.88017 0.9236 0.8402 0.88023	0.9060 R.N = 1,4 0.9238 0.9718 0.9718 0.9718 0.8982 0.9239 0.8882 0.9239 0.8882 0.9239 0.8882 0.9239 0.8882 0.9239 0.8882 0.9239 0.8842 0.89444 0.89444 0.89444 0.89444 0.894444 0.89444 0.89444 0.89444 0.89444 0.89444	0.9012 <i>R.N</i> = 2,3 0.9138 0.9556 0.9556 0.9556 0.8588 0.9159 0.8324 0.8773 0.9275	0.9015 <i>R.N</i> = 1: 0.9219 0.9629 0.9663 0.8962 0.9167 0.8397 0.8766			
Abbreviations: Abbreviations: The object cat Class Bicycle Bis Sus Car Cow Dog Dog Horse Motorbike	0.8936 M, Cartesian gri egory classificat EBP: W = <u>M = 4</u> <u>R.N = 2,4</u> 0.9268 0.9268 0.9264 0.9268 0.9356 0.8969 0.9156 0.8357 0.8877 0.9421	0.9968 d size: W.weightin ion results in AUC W _{(p} , T = 0.01 d 9303 0.9307 0.93	0.9983 ng method; W ₀ , u for eight differen .4 R.N 0.907 0.95 0.96 0.99 0.91 0.84 0.87 0.97 0.84 0.97 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.9	0.9012 niform; (R.N.T.) nt LBP descripto = 2,3 75 11 52 50 52 50 52 52 50 52 52 50 52 52 52 52 52 52 52 52 52 52	0.9052 CS-LBP operator p: rs <i>R.N</i> = 1,3 0.9199 0.9564 0.9556 0.9159 0	0.9066 rameters. M = 3 R.N = 2,4 0.9187 0.9724 0.9584 0.8917 0.9236 0.8402 0.8402 0.8402 0.8402 0.8402 0.9246	0.9060	0.9012 R.N = 2, 3 0.9138 0.9552 0.8582 0.8585 0.8524 0.8524 0.8524 0.8524 0.8524 0.8524 0.9555	0.9015 <i>R.N</i> = 1, 0.9219 0.9629 0.9663 0.8962 0.9167 0.8397 0.8397 0.83766 0.9333 0.9333 0.9333			
Abbreviations: Abbreviations: The object cal Class Bus Car Car Car Car Car Car Car Car Car Car	0.8936 M. Cartesian gri egory classificat LBP: W = <u>M = 4</u> <u>R.N = 2,4</u> 0.9268 0.9741 0.9665 0.8867 0.8357 0.8377 0.9431 0.8248	0.9968 d size: W.weightin ion results in AUC W ₀ , T = 0.01 d R.N = 1. 0.9301 0.9717 0.9701 0.9701 0.9714 0.9215 0.8877 0.8877 0.8877	0.9983 ig method; W ₀ , u for eight differen .4 & R.N 0.90 0.97 0.95 0.97 0.95 0.89 0.91 0.87 0.87 0.87 0.87 0.87	0.9012 niform; (R.N.T). nt LBP descripto = 2, 3 55 11 52 52 50 52 50 52 50 52 50 52 52 53 52 53 53 53 54 55 54 55 55 55 52 52 53 55 52 53 53 53 53 53 53 54 55 54 55 54 55 54 55 54 55 55	0.9052 CS-LBP operator p; rs	0.9066 rameters. M = 3 K.N = 2.4 0.9187 0.9724 0.9724 0.9684 0.05817 0.9236 0.8402 0.8402 0.8402 0.8402 0.9426 0.9426 0.9427 0.9477 0.9477 0.9477 0.94777 0.94777 0.947777 0.9477777 0.947777	0.9060 R.N = 1,4 0.9238 0.9718 0.9718 0.9718 0.8982 0.8982 0.8842 0.8844 0.8844 0.8844 0.8844 0.8277 0.8277	0.9012 <i>R.N</i> = 2,3 0.9138 0.9556 0.9556 0.9556 0.8588 0.9159 0.8324 0.8753 0.9356 0.9356 0.9356 0.9356	0.9015 <i>R.N</i> = 1. 0.9219 0.9629 0.9663 0.8962 0.9167 0.8397 0.8397 0.8397 0.8397			
Abbreviations: Abbreviations: The object cat Class Bus Car Car Cow Jog Lorse Motorbike Verson Resp	0.8936 M, Cartesian gri egory classificat EBP: W = <u>M = 4</u> <u>N = 2, 4</u> 0.9268 0.92741 0.94695 0.8367 0.8377 0.8377 0.8377 0.8377	$\begin{array}{c} 0.9068\\ \text{d size: W,weightin}\\ \text{ion results in AUC}\\ W_{(p,$T=0.01$)}\\ \hline \\ \hline \\ 8 & RN=1,\\ 0.9303\\ 0.9717\\ 0.9301\\ 0.9215\\ 0.8251\\ 0.8251\\ 0.8251\\ 0.8251\\ 0.8254\\ 0.9224\\ 0.$	0.9983 ng method; W ₀ , u for eight differen .4	0.9012 niform; (R.N.T) nt LBP descripto = 2, 3 75 11 52 50 52 50 52 52 50 52 52 52 52 52 52 52 52 52 52	0.9052 CS-LBP operator p: rs R.N = 1,3 0.9199 0.9564 0.9556 0.9156 0.9159 0.9159 0.9139 0.9459 0.9459 0.9219	0.9066. rameters.	0.9060	0.9012 R.N = 2, 3 0.9138 0.9652 0.8582 0.8585 0.8524 0.8524 0.8524 0.9239	0.9015 <i>R.N</i> = 1. 0.9219 0.9663 0.8962 0.9167 0.8397 0.8766 0.9333 0.8071 0.8762 0.9241			

Algorithm	Citation	SVM type	Optimization type	Style	Runtime
SMO	[Platt, 1999]	Kernel	Dual QP	Batch	$\Omega(n^2d)$
SVM ^{light}	[Joachims, 1999]	Kernel	Dual QP	Batch	$\Omega(n^2d)$
Core Vector Machine	[Tsang et al., 2005, 2007]	SL Kernel	Dual geometry	Batch	$O(s/\rho^4)$
SVM ^{perf}	[Joachims, 2006]	Linear	Dual QP	Batch	$O(ns/\lambda\rho^2)$
NORMA	[Kivinen et al., 2004]	Kernel	Primal SGD	Online(-style)	$\tilde{O}(s/\rho^2)$
SVM-SGD	[Bottou, 2007]	Linear	Primal SGD	Online-style	Unknown
Pegasos	[Shalev-Shwartz et al., 2007]	Kernel	Primal SGD/SGP	Online-style	$\tilde{O}(s/\lambda\rho)$
LibLinear	[Hsieh et al., 2008]	Linear	Dual coordinate descent	Batch	$O(nd \cdot \log(1/\rho))$
SGD-QN	[Bordes and Bottou, 2008]	Linear	Primal 2SGD	Online-style	Unknown
FOLOS	[Duchi and Singer, 2008]	Linear	Primal SGP	Online-style	$\tilde{O}(s/\lambda\rho)$
BMRM	[Smola et al., 2007]	Linear	Dual QP	Batch	$O(d/\lambda\rho)$
OCAS	[Franc and Sonnenburg, 2008]	Linear	Primal OP	Batch	O(nd)

Application to Robotvision@ICPR	2010
D For spHOEE, we choose $L = 4$ $r_x = r_y = \left[1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right]$ $d_x = d_y$ $\sigma = 2$ $N_o = 12$ leading to $N_s = 540$ and $d = 6480$	$y = \left[\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}\right]^T$
\Box For spELBP, spELBOP, we choose $L=3$ $r_x=r_y=d_x=d_x=d_y$ leading to $N_s=42$ and $d=10752$	$oldsymbol{f}_{y} = \left[1, rac{1}{2}, rac{1}{4} ight]^{T}$
	+ - + - +
spHOEE $(d = 6480, \eta = 0.30)$	
Set Classifier ER SRV AUC	
$E_{asy} \mid TRON = 0.328 1292.5 0.9251$	i_i_i_i_i_i_i
Easy PWLSGD 0.216 1724.5 0.9687	
Herd TRON 0.398 1025.5 0.8471	+ + - +
Herd PWLSGD 0.371 1129.0 0.8394	
spELBP $(d = 10752, \eta = 0.35)$	liblineardense spELBP, AUC= 0.98458 liblineardense spHOEE, AUC= 0.94864
Set Classifier ER SRV AUC	liblineardense spELBOP, AUC= 0.98009
Easy TRON 0.224 1691.5 0.9683	
Easy PWLSGD 0.156 1952.5 0.9783	+ - + - + - +
Hord TRON 0.338 1255.0 0.8855	!- + - + -!- + +
Hard PWLSGD 0.350 1211.5 0.8452	
spELBOP $(d = 10752, \eta = 0.35)$	
Set Classifier ER SRV \overline{AUC}	+ - +
Easy TRON 0.219 1711.0 0.9599	
Easy PWLSGD 0.215 1727.5 0.9621	
Hard TRON 0.388 1066.0 0.8416	pwisgd spELEP, AUC= 0.97/56 pwisgd spHOEE, AUC= 0.97067
Hard PWLSGD 0.393 1043.5 0.8395 $\frac{0 + -1111}{0 - 0.1 - 0.2 - 0.3 - 0.4}$	4 0.5 0.6 0.7 0.8 0.9 1

Application to Robotvision@ICPR 2010

□ Integrate the dynamic of the robot by smoothing the raw labels sequence via a Forward-Backward algorithm.

 \Box Corridor is connected to all other rooms. The state transition probabilities matrix A (10 × 10) is defined by:

$$a_{ij} = \Pr(y_k = i | y_{k-1} = j) = \begin{cases} 1 - \lambda, & i = j \\ \lambda, & i = 2, j \neq i \\ \frac{\lambda}{9}, & i \neq j, j = 2 \\ 0, & else \end{cases}$$

where $\lambda = \frac{1}{\tau}$ and τ the mean sejour in current state.

Conditional measurements probabilities are proportional to SVM outputs

	Late Fusion				
ER	Easy	Hard			
Task 1	0.1477	0.2994			
Task 2	0.0619	0.2567			
SRV	Easy	Hard	Easy+Hard		
Task 1	1985.5	1405.0	3390.5		
Task 2	2314.0	1568.5	3882.5		

[12] Heikkilä, M., Pietikäinen, M. and Schmid, C. (2009), Description of Interest Regions with Local Binary Patterns. Pattern Recognition 42(3):425-436

[13] Sanqiang Zhao and all, Performance Evaluation of Micropattern Representation on Gabor Features for Face Recognition, ICPR 2010

[14] Chao ZHU Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition, ICPR 2010

[15] Zhang, Baochang and Gao, Yongsheng and Zhao, Sanqiang and Liu, Jianzhuang, Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor, IEEE Transactions on Image Processing, Vol 19, Feb 2010

[16] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pe gasos:Primal Estimated sub-GrAdient SOlver for SVM. In ICML, pages 807–814, New York, NY, USA, 2007

[22] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong Gong, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2010

[23] J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman. Supervised Dictionary Learning. Advances Neural Information Processing Systems, 2008. Vancouver. Canada

[24] J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Dictionary Learning for Sparse Coding. International Conference on Machine Learning, Montreal, Canada, 2009

Hervé JEGOU INRIA / IRISA http://www.irisa.fr/texmex/people/jegou/

"Recherche d'Image à Grande Echelle : Procédés d'Aggrégation & d'Indexation"

Cet exposé sera axé sur la recherche d'image dans de très grandes bases d'images et de vidéos, pour lesquelles de nombreuses approches ont récemment été proposées tant du point de vue de la description que des stratégies d'indexation associées. Du point de vue de la description, nous nous intéresserons en particulier :

1) A la comparaison de techniques d'aggrégation vectorielles de descripteurs locaux, où des alternatives aux approches par sac-de-mots ont récemment émergées pour la recherche et la classification d'images,

2) Et aux techniques d'indexation récentes permettant d'indexer ces représentations.

Mots clefs : Méthode d'aggrégation vectorielle, Bag-of-words, Fisher Kernel et approximation, Recherche approximative, Locality-sensitive hashing, Méthodes basées codage de source, Recherche à grande échelle.

Références :

F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image categorization. CVPR 2007.

F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier. Large-scale image retrieval with compressed Fisher vectors. CVPR 2010

Jegou, Douze, Schmid & Perez. Aggregating local descriptors into a compact representation, CVPR 2010.

Jegou, Douze & Schmid. Product quantization for nearest neighbor search. T. PAMI, to appear.

L. Paulevé, H. Jégou & Laurent Amsaleg. Locality sensitive hashing: a comparison of hash function types and querying mechanisms. Pattern Recognition Letters, August 2010

M. Muja and D. G. Lowe, "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration", VISAPP'09

Extension to the bag-of-words approach

- Large vocabularies, Hierarchical quantization [Nister and Stewenius 2006]
- Soft Quantization [Philbin 2008, but used before]
- Post treatment: geometrical verification [Lowe 2004, Philbin 2007, ...]
- Integration of geometry within the index
- Voting interpretation: refinement of descriptor comparison [Jegou 2008] \rightarrow see the part on approximate nearest neighbor search
- Query expansion [Chum et al 2007]
- Handling bursts [Jegou 2009]
- ...

	corruption of the scori	ing measure		
	Oxford (mAP)	Holidays (mAP)	Kentucky (score: x/4) 2.99	
BOF	0.338	0.469		
HE +WGC	0.542	0.751	3.36	
HE +WGC +burstiness	0.596	0.807	3.47	
HE +WGC + burstiness + Multiple assignment	0.647	0.839	3.54	
HE +WGC +burstiness +MA +SP (Oxford: +QE)	0.747	0.848	3.64	
	Soft +Query exp. +SP	HE+WGC	CDM (scalable)	
State-of-the-art	0.718	0.751	3.68 (3.40)	
	[Philbin & al, 08]	[Jegou & al, 08]	[Jegou & al, 07, 0	

Bag-of-words: the ultimate solution?

Interesting for two tasks

- large scale indexing: efficient search inherited from inverted file
- \blacktriangleright classification: vector model \rightarrow useable with strong classifiers, in particular SVM
- A practical solution: mimick text → the same recipes/ingredients can be used
 stopping words, query expansion, handling burstiness, etc
- However, imprecise approximation of a set of descriptors
- Concurrent approaches: non vector methods
 - using approximate nearest neighbor search \rightarrow see later
- « Emerging » aggregation method: Fisher kernels
 - excellent results in international competitions (PASCAL VOC, Imagenet,...)
 - simplified version: VLAD

Aggregator	k	D	D'=D (no reduction)	D'=128	D'=64
BoF	1,000	1,000	41.4	44.4	43.4
BoF	20,000	20,000	44.6	45.2	44.5
BoF	200,000	200,000	54.9	43.2	41.6
VLAD	16	2,048	49.6	49.5	49.4
VLAD	64	8,192	52.6	51.0	47.7
VLAD	256	32,768	57.5	50.8	47.6

VLAD performance and dimensionality reduction

We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
Dimension is reduced to from D to D' dimensions with PCA

• Observations:

VLAD better than BoF for a given descriptor size

 → comparable to Fisher kernels for these operating points

Choose a small D if output dimension D' is small

	ĸ	D	Holidays (mAP)					
100 100			D' = D	\rightarrow D'=2048	$\rightarrow D'=512$	$\rightarrow D'=128$	$\rightarrow D'=64$	$\rightarrow D'=32$
BOF	1 0 0 0	1 000	40.1		43.5	44.4	43.4	40.8
	20 000	20 000	43.7	41.8	44.9	45.2	44.4	41.8
Fisher (μ)	16	1 0 2 4	54.0		54.6	52.3	49.9	46.6
	64	4 0 9 6	59.5	60.7	61.0	56.5	52.0	48.0
	256	16384	62.5	62.6	57.0	53.8	50.6	48.6
VLAD	16	1 0 2 4	52.0		52.7	52.6	50.5	47.7
	64	4 0 9 6	55.6	57.6	59.8	55.7	52.3	48.4
	256	16384	58.7	62.1	56.7	54.2	51.3	48.1
• Ob	256 servatio	16384 ons:	58.7 Dan BoF f	62.1	56.7	54.2	51.3	48

• see LSVRC'2010 challenge (Imagenet dataset)

Approximate nearest neighbor search

Product quantizer: asymmetric distance computation (ADC)

• Compute the square distance approximation in the compressed domain

$$d(x,y)^2 \approx \sum_{i=1}^m d(x_i, q_i(y_i))^2$$

- To compute distance between query x and many codes
 - ▶ compute $d(x_i, c_{i,j})^2$ for each subvector x_i and all possible centroids → stored in look-up tables
 - ▶ for each database code: sum the elementary square distances
- Each 8x8=64-bits code requires only m=8 additions per distance!
- IVFADC: combination with an inverted file to avoid exhaustive search

University of Kentucky benchmark INRIA Holidays dataset		score: nb relevant images, n score: mAP (%)		
Method	bytes	UKB	Holidays	
BoF, k=20,000	10K	2.92	44.6	
BoF, k=200,000	12K	3.06	54.9	
miniBOF	20	2.07	25.5	
miniBOF	160	2.72	40.3	
VLAD k=16, ADC	16	2.88	46.0	
VLAD k=64, ADC	40	3.10	49.5	

ſ

A few results									
structure/algorithm	total mem	$C_{\rm m}$	em C	dist	AP	time			
none/brute-force search	$62~\mathrm{GB}$	62 (GB 19	9 M	96.7	$89 \times$			
Levels $1+2, r=1$	122 MB	25 M	MB 18	3432	90.1	$2.52 \times$			
Levels $1+2$, no refinement	$12 \mathrm{MB}$	2.71	MB 18	3432	74.1	$1.10 \times$			
Levels $1+2+3 \ (m_r = 16)$ 43 MB		2.73	MB 19	9710	91.2	$1.33 \times$			
Levels $1+2+3 \ (m_r = 32)$	$73 \mathrm{MB}$	2.75	MB 19	9710	90.5	$1.42 \times$			
Levels $1+2+3 \ (m_{\rm r} = 64)$	$134 \mathrm{MB}$	2.79	MB 19	9710	91.7	$1.43 \times$			
TRECVID'08 copy detection task									
no transformation		best	second	ours	ran	k (/23)			
1 camcording		0.079	0.363	0.224		2			
2 picture in picture		0.015	0.148	0.321		4			
3 insertion of patterns		0.015	0.076	0.079		3			
4 strong re-encoding		0.023	0.095	0.064		2			
5 change of gamma		0.000	0.000	0.023		3			
6 photometric attacks		0.038	0.192	0.064		2			
7 geometric attacks		0.065	0.436	0.140		2			
8 3 random transformation	ns from $6/7$	0.045	0.076	0.437		5			
9 5 random transformatio	ons from $6/7$	0.038	0.173	0.693		5			
10 5 random transformatic	ns	0.201	0.558	0.537		2			

Thank you for your attention
DEMO!

Jean-Paul GAUTHIER LSIS / USTV - ESCODI http://www.lsis.org/gauthierjp/

"Sur les Mécanismes Optimaux mis en oeuvre par le Système Nerveux Central"

On prouve le "Théorème" suivant: Le système nerveux central minimise quelque chose comme le travail absolu, c'est à dire la dépense effective d'énergie non signée.

Cette preuve repose sur 3 points: L'observation systématique de l'apparition de périodes de silence de l'activité musculaire (agoniste et simultanément antagoniste) dans les mouvements de pointage; le principe du maximum de Pontriaguin ; et le théorème de transversalité (Thom).

Une discussion est alors posée sur le contrôle optimal oculaire, à savoir si ce principe d'optimalité est applicable ou non, si oui dans quelle mesure.

Références :

Gauthier et al., "A biomechanical inactivation principle ", Proceedings of the Steklov Mathematical Institute, Vol 268, 2010.

Gauthier et al., " The Inactivation Principle: Mathematical Solutions minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements ", PLoS Comput. Biol. 4 (2008), N10, http://www.lsis.org/gauthierjp/papers/114.pdf "

An Inactivation Principle In Biomechanics

By J.P. Gauthier, B.Berret, F.Jean Universities of Toulon, Dijon, and E.N.S.T.A. (France). Supported by CNES (National Center for Spatial Studies)

	The systems under consideration	
(1	(1) $(\Sigma) \ddot{x} = \phi(x, \dot{x}, u),$	
_agrangian:	$L(x, \dot{x}) = \frac{1}{2} \dot{x}^T M(x) \dot{x} - V(x),$	
Let $\tau = S($ define $N(x, \dot{x})$ forces. We as \mathbb{R}^n and $S(x)$ consider first, forces. This is	(<i>x</i>) <i>u</i> represent the generalized force resulting from the input <i>u</i> and) to be any other forces acting on the system, for instance friction ssume that the control acts on every degree of freedom, that is, $u \in$ is invertible. Moreover, in the "exactly-fully-actuated" case that we $S(x) = Id$, which means that we control directly via the generalized is always possible up to some feedback.	
The equation	ons of motion are given by substituting into Lagrange's equation, $\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = S(x)u + N(x, \dot{x}) = \tau + N(x, \dot{x}),$ In of the form (11), with	
(3.1) (3.1)	$\phi(x, \dot{x}, u) = M(x)^{-1}(N(x, \dot{x}) - \nabla V(x) - C(x, \dot{x})\dot{x} + \tau),$	
()	riolis matrix $C(x,\dot{x})\in M_n(\mathbb{R})$ is defined as	
where the Cor	$C_{ij}(x,\dot{x}) = \frac{1}{2} \sum_{i=1}^{n} (\frac{\partial M_{ij}}{\partial M_{ij}} + \frac{\partial M_{ik}}{\partial M_{ik}} - \frac{\partial M_{kj}}{\partial M_{kj}})\dot{x}.$	
where the Cor	$\mathcal{O}_{ij}(x,x) = \frac{1}{2} \sum_{k=1}^{j} \left(\frac{\partial x_k}{\partial x_k} + \frac{\partial x_j}{\partial x_j} - \frac{\partial x_k}{\partial x_i} \right)^{k_k}.$	

Systems under consideration

Also, using the Legendre transform: $(x, \dot{x}) \rightarrow (x, p)$, where $p = \frac{\partial L}{\partial \dot{x}}$, considering the Hamiltonian h(x, p) of the problem:

$$h(x, p) = \langle p, \dot{x} \rangle - L(x, p),$$

we get the equations of the motion via the characteristic field of the Hamilton-Jacobi equation:

$$\dot{x} = \frac{\partial h}{\partial p}, \dot{p} = -\frac{\partial h}{\partial x} + \tau + N(x, p),$$

from what follows that the work w of external forces, $w = \int (\tau + N(x, p)) dx$ is just equal to the variation of the Hamiltonian:

$$\dot{w} = h$$
.

In particular, if there is no friction, the variation of the Hamiltonian is equal to the work of the external forces τ during the motion. Of course, in this last equality, the work of external forces is counted algebraically: a motion in one direction followed by a motion in opposite direction may give zero work.

7

The absolute work

In the paper, we consider the Absolute-Work Aw of the external forces, which corresponds actually to the energy spent to control the system:

(3.2)
$$Aw = \int |\tau \dot{x}| dt = \int \sum_{i=1}^{n} |\tau_i \dot{x}_i| dt.$$

As a consequence, $\dot{A}w$ denotes the function of y, τ :

$$\dot{A}w = |\tau \dot{x}| = \sum_{i=1}^{n} |\tau_i y_i|.$$

Then, in the next sections we shall consider our controlled mechanical system Σ (with $u=\tau)$:

$$\Sigma$$
) $\dot{X} = \Phi(X, u)$, $X \in \mathbb{R}^{2n}$, $u \in U \subset \mathbb{R}^n$,

and we shall minimize a cost that will be a compromise of the form:

(3.3)
$$J(u) = Aw + \int_0^{\infty} M(X, u)dt,$$

in which M(X, u) is a "comfort term" that for technical reasons we will assume to be smooth and strictly convex w.r.t. the control u.

 $\label{eq:product} \begin{array}{l} \textbf{Agonistic-antagonistic action} \\ \textbf{ u belongs to a subset U of \mathbb{R}^m with $0 \in int$ U$. Here in most cases, U is a product of intervals of the type: \\ $U = [u_1^-, u_1^+] \times \ldots \times [u_n^-, u_n^+]$, \\ $U = [u_1^-, u_1^+] \times \ldots \times [u_n^-, u_n^+]$, \\ $When the system is exactly-fully-actuated, or: $U = [0, u_1^+] \times \ldots \times [0, u_n^+] \times [u_1^-, 0] \times \ldots \times [u_n^-, 0]$, \\ i the case of a pair of agonistic-antagonistic muscles for each degree of freedom. In both cases $u_i^- < 0$, $u_i^+ > 0$, $i = 1, \ldots, n$. \\ $. $\phi \in C^{\infty}(\mathbb{R}^{3n}, \mathbb{R}^n)$ is such that $\frac{\partial \phi}{\partial u}(x, \dot{x}, u)$ is always invertible. \\ $Setting $X = (x, y) = (x, \dot{x})$, we rewrite the system as $\dot{X} = \Phi(X, u)$, $X \in \mathbb{R}^{2n}, $u \in U \subset \mathbb{R}^n. \\ (1.2) (Σ) $\dot{X} = \Phi(X, u)$, $X \in \mathbb{R}^{2n}, $u \in U \subset \mathbb{R}^n. \\ \end{cases}$

9

Agonistic-antagonistic action

In the case of agonistic-antagonistic action, we set $u = u_1 - u_2$, where $0 \le u_{1,i} \le u_i^+$ and $0 \le u_{2,i} \le -u_i^-$. Then $u_{1,i}$ (resp. $u_{2,i}$) are the agonistic (resp. antagonistic) generalized force applied at the i^{th} degree of freedom.

We consider a compromise of the type (1.4), i.e. $J(u) = \int_{0}^{1} f(x, y, u)dt + Aw$, in

which

$$Aw = \int_0^T \sum_{i=1}^n |u_i y_i| dt$$

for total actions. It means that, for agonistic-antagonistic actions, we shall minimize:

$$f'(u_1, u_2) = \int_0^1 f(x, y, u_1 - u_2) dt + Aw'$$

where,

$$Aw' = \int_0^T (\sum_{i=1}^n |u_{1i}y_i| + \sum_{i=1}^n |u_{2i}y_i|) dt,$$

is the total absolute work of external forces.

J

examples

(2.2)
$$\tau = H(\theta).\hat{\theta} - \hat{h}(\theta).r(\hat{\theta}) + G(\theta) + B.\hat{\theta},$$

In which H is the (symmetric positive definite) matrix of principal inertia moments, $\hat{h}(\theta).r(\dot{\theta})$ is the Coriolis term, G is the vector of gravitational torques and B is the matrix of friction terms (a constant here). The term τ is the vector of external torques (the controls in our case), i.e. $\tau = u$. Details show:

$$\begin{aligned} (2.3) & \tau_1 = H_{11}\ddot{\theta}_1 + H_{12}\ddot{\theta}_2 - \hat{h}\ \dot{\theta}_2^2 - 2\hat{h}\ \dot{\theta}_1\dot{\theta}_2 + G_1 + B_{11}\dot{\theta}_1 + B_{12}\dot{\theta}_2, \\ & \tau_2 = H_{22}\ddot{\theta}_1 + H_{21}\ddot{\theta}_2 + \hat{h}\ \dot{\theta}_1^2 + G_2 + B_{21}\dot{\theta}_1 + B_{22}\dot{\theta}_2, \end{aligned}$$
with
$$H_{11} = m_1l_{c1}^2 + I_1 + m_2l_{c2}^2 + I_2 + m_2(l_1^2 + 2l_1l_{c2}\cos\theta_2), \\ H_{12} = m_2l_{c2}^2 + I_2 + m_2l_1l_{c2}\cos\theta_2, \\ H_{21} = H_{12}, \\ H_{22} = m_2l_{c2}^2 + I_2, \\ \hat{h} = m_2l_{lc2}\sin\theta_2, \\ G_1 = g\{m_1l_{c1}\cos\theta_1 + m_2\ (l_{c2}\cos(\theta_1 + \theta_2) + l_1\cos\theta_1)\}, \\ G_2 = gm_2l_{c2}\cos(\theta_1 + \theta_2), \end{aligned}$$

Examples: small angles assumption

Example 3. (One degree of freedom, small angles assumption).

The first order approximation in the equation 2.1 just consists of setting $\cos(x) = \cos(x_0)$. Assuming the initial condition to be the "horizontal arm", we get $\cos(x) = 1$ and the system is just the following standard linear³ system:

 $(\Sigma_{1dl}) \dot{x} = y$ $\dot{y} = u - k.$

Example 4. (Two degrees of freedom, small angles assumption).

Here, as in the previous example, we neglect the friction terms. Therefore, in the linearization around an equilibrium point $(x, \dot{x}) = (x, y) = (x_0, 0)$, we get no occurrence of y: linear part is zero and quadratic part in y disappears at y = 0.

Therefore, our linearized⁴ system is of the following form, setting $X = \begin{pmatrix} x \\ y \end{pmatrix}$:

 $(\Sigma_{2dl}) \dot{X} = AX + Bu + F,$

where A, B, F are of the form:

(2.5)

(2.6)

$$A=(\begin{array}{cc} 0 & Id_2\\ \tilde{A} & 0 \end{array}), \ B=(\begin{array}{cc} 0\\ \tilde{B} \end{array}), F=(\begin{array}{cc} 0\\ \tilde{F} \end{array}).$$

Under this assumption, all computations can be made explicitely.

Inactivation principle (for total actions).

We minimise a compromise « absolute work » versus « comfort term ».

Let us consider some optimal trajectory defined on [0, T], and meeting the following two technical assumptions (H_1, H_2) :

 (H_1) Continuity of optimal control: the corresponding optimal control $u^*(t)$ is continuous on [0,T],

 (H_2) Change of sign for optimal control: some component u_i^* of the optimal control changes sign at some time $t_c \in]0, T[$, while $y_i(t)$ keeps constant sign. It means that there are some times $t_1, t_2, t_1 < t_c < t_2$, such that $u_i^*(t_1)u_i^*(t_2) < 0$ and $y_i(t) \neq 0$ for $t_1 \leq t \leq t_2$.

Theorem 4. (inactivation principle) Along a regular optimal trajectory meeting (H_1, H_2) there are partial inactivations. There are also some regular extremal trajectories along which total inactivations do exist, through any $X \in \mathbb{R}^{2n}$.

The proof relies on some (trivial) nonsmooth analysis argument. But some of its generalizations (dynamics on the muscles) really use a nonsmooth version of PMP.

Idea of the proof of the inactivation principle

Proof. The proof is very simple: along the optimal trajectory the Hamiltonian h of the optimal control problem has to be maximum. which means by (4.8) that $0 \in \partial_{u_i}h$ for all i = 1, ..., p. But, $h(\lambda, X(t), P(t), u^*(t)) = \lambda \varphi(Aw, X, u^*) + P.\Phi(X, u^*)$ and $\lambda < 0$ since we consider regular trajectories only. The maximum condition for the Hamiltonian gives:

The maximum condition for the Hamiltonian gives:

4.10)
$$0 \in \partial_{u_i} h(P(t), X(t), u^*(t)).$$

The variables P(t) and X(t) being also continuous, the quantity $\partial_{u_i}h(P(t), X(t), u^*(t))$ is an interval I(t) (degenerating to a point as soon as $u_i^*(t) \neq 0$) and moving continuously with the time t. At a time t_c when $u_i^*(t_c) = 0$, it is a nontrivial time interval $I(t_c)$, since $\frac{\partial \varphi}{\partial A w}$ and λ are both different from zero. Hence, since $u_i^*(t)$ changes sign at t_c , it takes a certain strictly positive amount of time to cross $I(t_c)$. Then $u_i^*(t)$ remains exactly equal to zero during some nontrivial time interval. This is partial inactivation.

Second, we take an arbitrary X = (x, y), with $y_i \neq 0$ for all i = 1, ..., n and $\lambda = -1$. We denote by $(M(x)^{-1})_i$ the i^{th} column of the invertible matrix $M(x)^{-1}$. Then, for u = 0, we compute the set $S = \partial_u h(P, X, u)$. If we set P = (p, q), then due to the fact that $\frac{\partial P \cdot \Phi(X, u)}{\partial u_i} = q \frac{\partial \phi(x, y, 0)}{\partial u_i} = q(M(x)^{-1})_i$, we can chose q for 0 be exactly the center of the set $S \subset \mathbb{R}^n$, which is a hypercube with nonempty interior. It is clear by construction that the extremals starting from this point (X, P, 0) have total inactivations.

Gradient on controls: Clarke's maximum principle

Then, to connect (in optimal way) the source $(x, y, u) = (x_0, 0, u_0)$ to the target $(x_T, 0, u_T)$, where u_0 and u_T are the stationary controls corresponding respectively to $x_0 < x_T$, the strategy must be as follows: $v = v^+$, for $0 \le t \le T_1$; $v^- < v < v^+$ for $T_1 < t \le T_2$; $v = v^-$ for $T_2 < t \le T$.

Therefore, inside the interval $[T_1, T_2]$, the Hamiltonian being maximum w.r.t. v, we must have r(t) = 0. therefore also $\frac{dr}{dt} = 0$. But by the Clarke's maximum

principle, it means that $\frac{dr}{dt} \in -\partial_u \tilde{H} = yI + \frac{\partial f}{\partial u} - q$, in which I is the Clarke's gradient of the absolute value function at zero, i.e. I = [-1, 1]. Since $\frac{dr}{dt} = 0$, we conclude:

$$0 \in -\partial_u \tilde{H} = yI + \frac{\partial f}{\partial u} - q.$$

This equation was exactly the cause of inactivations in the non-constrained case.

25

Inactivations for agonistic-antagonistic muscles

For this analysis, we consider that $u = u_1 - u_2$, where $0 \le u_{1,i} \le u_i^+$ and $0 \le u_{2,i} \le -u_i^-$. Then $u_{1,i}$ (resp. $u_{2,i}$) are the agonistic (resp. antagonistic) generalized force applied at the i^{th} degree of freedom.

$$J'(u_1, u_2) = \int_0^T f(x, y, u_1 - u_2) dt + Aw',$$

where,

$$Aw' = \int_0^T (\sum_{i=1}^n |u_{1i}y_i| + \sum_{i=1}^n |u_{2i}y_i|) dt,$$

is the total absolute work of external forces.

Theorem 5. (Total inactivation for agonistic-antagonistic actions) In the case of agonistic-antagonistic actions, minimizing a compromise containing the absolute work leads to total (simultaneous) inactivations of both actions, exactly where the total optimal action is inactive.

Proof of inactivation principle for agonistic-antagonistic muscles

First let us assume that $u_1(t)$, $u_2(t)$, minimize J', with optimal value $J^{*'}$. Consider $u(t) = u_1(t) - u_2(t)$. Clearly, u(t) applied to the system:

(4.13)
$$\ddot{x} = \phi(x, \dot{x}, u),$$

and $u_1(t), u_2(t)$ applied to the system:

$$(4.14) \qquad \ddot{x} = \phi(x, \dot{x}, u_1(t) - u_2(t)),$$

produce the same x-trajectories. Therefore,

$$\begin{aligned} J(u) &= \int_{0}^{T} (f(x, y, u_1 - u_2) + \sum_{i=1}^{n} |(u_{1i} - u_{2i})y_i|) dt, \\ &\leq \int_{0}^{T} (f(x, y, u_1 - u_2) + \sum_{i=1}^{n} |u_{1i}y_i| + \sum_{i=1}^{n} |u_{2i}y_i|)) dt, \\ &= J'(u_1, u_2) = J^{*'} \end{aligned}$$

This shows that the minimum $J^* = \min_u J(u) \le J^{*'}$.

27

Proof of inactivation principle for agonistic-antagonistic muscles Conversely, assume that u attains the minimum J^* of J(u). We define u_1, u_2 from u as follows: $u_1(t) = u(t)$ if u(t) > 0, (4.15)= 0 elsewhere, and $u_2(t) = -u(t)$ if u(t) < 0, = 0 elsewhere. Again $u_1 - u_2 = u$, hence applying u to (4.13) produces the same x-trajectory than applying $u_1 - u_2$ to 4.14. therefore: $J'(u_1, u_2) = \int_0^T (f(x, y, u_1 - u_2) + \sum_{i=1}^n |u_{1i}y_i| + \sum_{i=1}^n |u_{2i}y_i|))dt,$ $= \int_{0}^{T} (f(x, y, u_1 - u_2) + \sum_{i=1}^{n} |(u_{1i} - u_{2i})y_i|) dt,$ by definition of u_1, u_2 . It means that: $J'(u_1, u_2) = J^*,$ (4.16)This shows the converse. 28

Imprimé à La Garde en septembre 2010 à l'université Sud-Toulon Var

ISBN 2-9524747-3-7

EAN 9782952474733