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ABSTRACT
We propose a novel matrix modular support vector Machine
(MMSVM) classifier that partitions an image retrieval task
into many easier two-class tasks between subsets, each of
which is accomplished by a SVM model, and then combines
the outputs of the SVM models to produce the final decision.
The classifier is tested on ImageClef2009 Photo Annotation,
with a comparison with the single SVM model. The ex-
perimental results show that our MMSVM model performs
well as a classifier in image retrieval, especially in enhanc-
ing the classification accuracy for positive samples. We also
demonstrate that the MMSVM model has an apparent com-
plementary classification capability to SVM. A good fusion
on them might improve the accuracy of image retrieval.

Categories and Subject Descriptors
I.4.8 [Computing Methodologies]: IMAGE PROCESS-
ING AND COMPUTER VISION Scene Analysis
; I.5.2 [Computing Methodologies]: PATTERN RECOG-
NITION Design Methodology
; H.3.1 [Information Systems]: INFORMATION STOR-
AGE AND RETRIEVAL Content Analysis and Indexing
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1. INTRODUCTION
Classification plays an important role in image retrieval,

and can greatly affect the retrieval accuracy. In real ap-
plications of all sorts of classifiers, their fast and non-local
convergent property, good mapping and generalization capa-
bility, and adaptive learning behavior are commonly pursued
by the users. For simple training data, all these demands
are easily met. However, when high complexity becomes
an issue, the learning speed and generalization capability of
classifiers obviously decrease, and can generally be unsatis-
factory.

Some researchers have tried to solve these problems by
some output coding methods such as distributed output
codes [1] and error-correcting output codes (ECOC) [2].
These methods may improve the generalization capability of
the classifiers.

However, distributed output coding requires enough prior
analysis and knowledge on the samples, which are absent
from most of the conditions; the ECOC method cannot make
the size of a training set smaller, and the learning process
turns out to be more time-consuming when the number of
classes is large.

Nilsson [3] proposed a neural network architecture with
several perceptrons and a voting machine, called modular
neural networks (MNN). By this technique, a complex su-
pervised learning task can be accomplished by first dividing
it into some subtasks and in turn assigning these subtasks to
several experts; and then by an integration machine to inte-
grate all results of the experts to produce the solutions for
the complex task. Generally speaking, modular classifiers
can largely reduce the sizes of the classifiers, and thereby
speed up the classifier learning and enhance the generaliza-



tion capability [3].
So far, many classifiers have been developed, such as KNN,

MLP [4], KDA [5], SVM [6], and so on. Among these clas-
sifiers, SVM framework is certainly the most powerfull. We
experimented some for image retrieval, by which we con-
structed the 4th best team image retrieval system in Im-
ageCLEF 2008 VCDT [7]. However, it did not always do
well for all visual concepts, which may be caused by the
imbalanced training data. Actually, image retrieval is gen-
erally a 2-class classification problem to distinguish one topic
from all other topics. Therefore many more negative train-
ing samples than positive ones are provided for training in
image retrieval systems. As a result, the whole training data
is mightily imbalanced and the training is apt to meet the
larger subset, namely the negative samples, but not the pos-
itive ones, hence the retrieval accuracy becomes low [8]. A
solution scheme using modular neural networks can be found
in [9][10], in which the method of pairwise coupling was in-
troduced to decompose a large 2-class classification task into
a series of smaller 2-class sub-tasks. Each of these smaller
tasks is to distinguish one class from another class, instead
of all other classes. So this method can avoid the imbalance
of the training data.

Meanwhile, it may occur that the smaller 2-class problems
obtained by the above task decomposition are still hard to
construct general classifiers. In order to overcome this dif-
ficulty, we have proposed to partition these two-class tasks
into even smaller two-class subtasks [12]. In this paper we
propose a modular classification system called matrix mod-
ular support vector machines (MMSVMs) to implement im-
age retrieval tasks.

In this paper, we use Gabor filters as descriptors for im-
ages. Gabor filters are directly related to Gabor wavelets,
since they can be designed for a number of dilations and
rotations. However, in general, expansion is not applied
for Gabor wavelets, since it requires the computation of bi-
orthogonal wavelets, which may be very time-consuming.
Therefore, usually, a filter bank consisting of Gabor filters
with various scales and rotations is created. The filters are
convolved with the signal, resulting in a so-called Gabor
space. This process is closely related to processes in the
primary visual cortex. The Gabor space is very useful in
image processing applications such as iris recognition, fin-
gerprint recognition and image retrieval. Relations between
activations for a specific spatial location are very distinctive
between objects in an image. Furthermore, important acti-
vations can be extracted from the Gabor space in order to
create a sparse object representation.

2. MATRIX MODULAR SVM
In our scheme, we partition each class space into several

smaller subspaces. Then our matrix modular classifier ar-
chitecture divides a complex problem into many much easier
subtasks, each of which is to distinguish between one certain
subspace and another subspace. These subtasks are then
implemented by a series of SVMs, which can make up of a
matrix of SVMs. So the proposed MMSVMs mainly contain
two parts: a matrix of SVMs and an integration machine
(see Figure 1). The input values for the MMSVMs are al-
ways presented to the matrix of SVMs, which will yield a
matrix of outputs. This matrix of outputs is then fed to the
integration machine so that a classification decision can be
made.

2.1 Task Decomposition
The retrieval of one topic among K topics is just to dis-

tinguish one class from the remaining K − 1classes, and is a
2-class classification problem. The well-known divide-and-
conquer strategy can be used to divide this classification
problem into (K−1) smaller 2-class subtasks, each of which
is to distinguish between the retrieval topic and one of the
other topics; then all the (K−1) pairwise decisions are com-
bined to form the final decision. The detailed decomposition
process can be seen in [12]. Thereby, for topic i, we should
construct K − 1 classifiers Pij (j = 1, ..., K, j 6= i), each of
which is to distinguish class i from class j.

The task decomposition is stated in detail as follows. As-
suming that χk denotes the positive input set for topic k,
then

χk = {Xl
k}

Nk

l=1, k = 1, 2, ...K

where Xl
k is the input values for the positive samples of topic

k.
Furthermore, using clustering methods, we can divide the

input set of class ck, χk, into Dk subsets as, χd
k, d = 1, 2, ...Dk .

Then for retrieval topic i we should construct a total of
Di(D − Di) classifiers, Pidijdj , where D =

PK

k=1 Dk, di =
1, ..., Di, j = 1, ..., K, j 6= i, dj = 1, ..., Dj .

2.2 The Matrix of SVMs
For retrieving each topic i, we design two SVM matrices

as follows

Mi = (Mi1, ..., Mi(i−1), Φ, Mi(i+1), ..., MiK)
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where Mij is a Di ∗Dj SVM matrix in charge of distinguish-
ing class i from class j , and
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= (Pidijdj ),

j = 1, ..., K, j 6= i, di = 1, 2, ..., Di, dj = 1, 2, ..., Dj .

Here Pidijdj is an SVM with only one output node, which
generates the output value oidijdj (oidijdj ∈ [0, 1]) . The
module of Pidijdj undertakes the subtask of distinguishing

the subset χdi
i from that of χ

dj
j .

Then the output matrices Oi and O
′

i yielded by the SVM

matrices Mi and M
′

i respectively, can be described as follows:
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Figure 1: The structure of MMSVMs

where Oij and Oji are the Di∗Dj and Dj ∗Di output matrix
corresponding to the matrices Mij and Mji, respectively,
and

Oij =
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= (oidijdj ),

j = 1, ..., Kj 6= i, di = 1, 2, ..., Di, dj = 1, 2, ..., Dj .

2.3 Integration Machine
The averaging approach [14] used in general modular clas-

sifier systems is to adopt the average of the results from all
modules as the basis of the final classification decision. To
be used in our proposed MMSVM architecture, our averag-
ing machine is modified as follows. Since the desired outputs
of Pidijdj for the samples from χdi

i and those from χ
dj

j are set
to 1 and 0, respectively, the values of oidijdj can be regarded
as a conditional posterior-probability with which the input
belongs to χdi

i , namely

Prob(x ∈ χ
di
i | Pidijdj ) = oidijdj .

In the matrix Mij , all of the elements which have the desired
outputs of 1 for the inputs from χdi

i , denoted by the Pdi
i row

of the matrix Mi are in charge of distinguishing χdi
i from all

D − Di subsets of the classes except i. While in the matrix
Mji, all elements which have the desired output of 1 for the

inputs from χ
dj
j , denoted by the Pdj

j row of the matrix M
′

i

are in charge of distinguishing χ
dj
j from all Di subsets of

the class i. So our averaging approach is to use the average
output value of the Pdi

i row of Mi as a new estimate of the
posterior-probability with which x belongs to χdi

i :

Probaverage(x ∈ χ
di
i | Pdi

i )

=
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K
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where Pdi
i denotes the set of the SVMs Pidijdj (for all j =

1, ..., K, j 6= i, dj = 1, ..., Dj ).

We use the average output value of the Pdj
j row of M

′

i

as a new estimate of the posterior-probability with which x

belongs to χ
dj

j :

Probaverage(x ∈ χ
dj
j | Pdj

j ) =
1

Di

Di
X

di=1

Prob(x ∈ χ
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1

Di
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X
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where Pdj
j denotes the set of the SVMs Pjdj idi(for all di =

1, ..., Di).
Then the final decision can be given by:

Assign x −→ Topic i

if i == arg max{Probaverage(x ∈ χ
dk
k )}

for all k = 1, ..., K, dk = 1, ..., Dk.

2.4 Desired Outputs
Assuming that a test pattern, x, from χdk

k , is transmitted
to the matrix of SVMs, we will acquire a matrix of out-
puts O, in which the desired values of okdkjdj (j 6= k) are
all 1 and the desired values of ojdjkdk are all 0, according
to the definition of the MMSVM. Thereby, the desired av-
erage value of okdkjdj is 1, while the desired average value
of oidijdj (i 6= k) is absolutely less than that of okdkjdj be-
cause among D −Di elements of each row oidijdj (i 6= k; j =
1, 2; j 6= i; dj = 1, ..., Dj), there is at least one element, viz.
oidikdk , whose desired value is 0. So the average value of the
kdk row of the output matrix must be greater than that of
any other row idi(i = 1, 2; i 6= k; di = 1, ..., Di) if all SVM
models perform well.

2.5 Clustering for Subset Divisions
The simple and popular K-means clustering method is

used for subset divisions. We use the MSE criterion to de-
termine the number of clusters each class should be divided
into. The Figure 2 shows an example of the MSE change
with the number of clusters. We performed K-means clus-
tering on the positive and negative sample sets for the topic
’indoor’ of VCDT, with the number of clusters varying from
1 to 30. Then the MSE decreases with the increase of the



Table 1: Accuracy rates in % of SVM, MMSVMs
and their fusion on ImageCLEF2009 Photo Annota-
tion dataset, where ’AR’ denotes the classification
accuracy rate on the whole testset, ’PAR’ represents
the classification accuracy rate for the positive sam-
ples, and ’NAR’ is the classification accuracy rate
for the negative samples.

SVM MMSVM FUSION
AR 88.10 86.68 87.67
PAR 13.07 16.04 14.67
NAR 91.55 88.60 90.70

number of clusters, first sharply and then slightly. An inflec-
tion point can be found on the curve for either the positive
or negative set, where the number of clusters is equal to 5
and 8, respectively. Thereby we set the number of clusters
for the positive and negative sets as 5 and 8, respectively.

3. FAST CLASSIFICATION BY LS SVM
We use the Least Squares Support Vector Machines (LS-

SVM) in our MMSVMs system. The SVM [6] first maps
the data into a higher dimensional input space by some ker-
nel functions, and then learns a separating hyperspace to
maximize the margin. The SVM is typically based on an ε-
insensitive cost function, meaning that approximation errors
smaller than ε will not increase the cost function value. This
results in a quadratic convex optimization problem. The
least square support vector machines (LS-SVM) [15] are a
reformulation to the standard SVMs which lead to solving
linear KKT systems instead, which is quite computationally
attractive. Thus, in all our experiments, we will use the LS-
SVMlab1.5 from esat.kuleuven. We use the RBF kernel and
10-fold cross validation to tune its sigma.

4. RESULTS AND DISCUSSION
In this section, we compare our MMSVMs with a sin-

gle SVM on the ImageCLEF2009 Photo Annotation dataset
[13]. This dataset provides a training set of 5000 images
which are labeled by 53 concepts and a test set of 13000
images. All images may have multiple annotations. Most
annotations refer to holistic visual concepts and are anno-
tated at an image-based level. This task poses one main
challenge: Can image classifiers scale to a large amount of
concepts and data ?

In our experiments, the Gabor filter is used as the visual
features [11]. The image is first filtered with a bank of ori-
entation and a scale. The energy in the frequency domain in
the corresponding sub-bands is then used as the components
of the texture descriptor.

The Table 1 shows the accuracy results of MMSVMs and
SVM. It indicates that the MMSVM model has a slightly
worse AR than SVM, but that MMSVMs do better on PAR,
with an enhancement of about 3 points, worse on NAR with
a similar loss.

We plotted in Figure 3 the classification accuracy rate of
MMSVMs and SVM by topic. The comparison results are
very interesting: for some certain topic, if the PAR per-
formance is improved, then the NAR is decreased. This
phenomenon is much consistent with the shortcoming of the
SVM algorithm in dealing with an imbalanced dataset. The

negative set, with a much larger size than the positive set,
attracts most of attention of the SVM learning (which is the
same as MLP or other NNs), while the positive set might
not be learned sufficiently. However, our MMSVM model
decomposes the positive and negative sets into several bal-
anced subsets, so the learning can be averagely shared be-
tween positive and negative sets, and then the performance
on the positive set is improved while the performance on
negative set is decreased. Based on this analysis, we should
take into account which of the two costs is larger: the cost
of misclassifying positive samples into negative ones and the
cost of misclassifying negative samples into positive ones.
If the former is larger, then MMSVMs should be selected;
otherwise, SVM should be selected.

According to the above analysis, we perform fusion be-
tween the MMSVMs and SVM by the following formula:

Wi =
Ni

N
,

Sfi = Wi ∗ Ssi + (1 − Wi) ∗ Smi,

where N denotes the number of all training samples; Ni

denotes the number of positive training samples for topic i;
Sfi denotes the fusion score for topic i; Ssi is the score for
topic i obtained from SVM; and Smi is the score for topic i

obtained from MMSVM.
The fusion results (in Table 1) and top of Figure 3 show

that the scores (AR, PAR, NAR) of the fusion are all be-
tween those of MMSVMs and SVM. So this fusion could be
a good compromise for special requirements. To inspect the
characteristics of MMSVMs, we also plotted the count of
positive training samples by topic in the bottom of Figure
2. We can see that, for both SVM and MMSVMs, the PAR
performance is improved with the increase of the percentage
of positive samples on the whole training set, and the NAR
performance is improved with the increase of the percent-
age of the negative samples on the whole training set. So
like SVM, MMSVMs can attain better AR if more training
samples are provided.

5. CONCLUSION
The proposed MMSVM framework brings a new direc-

tion to tackle the imbalance problem in SVM-based image
retrieval systems. It performs well as a classifier in image
retrieval systems, especially in enhancing the classification
accuracy rate for the positive samples. However, the clas-
sification accuracy rate for the negative samples is reduced
since the learning for the negative set is weakened. So in
its applications, we should take into account which of the
two costs is larger: the cost of misclassifying positive sam-
ples into negative ones and the cost of misclassifying nega-
tive samples into positive ones. If the former is larger, then
MMSVMs should be selected; otherwise, SVM should be
selected.

The simple fusion proposed here between MMSVMs and
SVM did not make any improvement. So our further work
will be focused on fusion methods by the apparent comple-
mentary classification capability for positive and negative
samples between MMSVMs and SVM.
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Figure 3: Top: Comparisons of PAR (*) and NAR (+) between MMSVMs and SVM by topic (SVM: blue;
MMSVM: red; Fusion: green). Bottom: The counts of positive training samples for the corresponding topic.


