
WHALE COCKTAIL PARTY : REAL -TIME MULTIPLE TRACKING AND SIGNAL ANALYSES

Hervé Glotin1, Frédéric Caudal1, Pascale Giraudet2

1-System & Information Sciences Laboratory (LSIS - UMR CNRS6168)

2-Department of Biology

Université du Sud Toulon Var - BP 20132 - 83957 La Garde Cedex -France.

{glotin, caudal, giraudet}@univ-tln.fr

ABSTRACT
This paper provides a real-time passive underwater acoustic method to track multiple emitting whales using four

or more omni-directional widely-spaced bottom-mounted hydrophones. Since the interest in marine mammals has
increased, robust and real-time systems are required. To meet these demands, a real-time multiple tracking algorithm
is developed. After a non parametric Teager-Kaiser-Mallatsignal filtering, rough Time Delays Of Arrival are calcu-
lated, selected and filtered, and used to estimate the positions of whales for a constant, linear sound speed profile or an
estimated. The complete algorithm is tested on real data from the NUWC1 and the AUTEC2. Our model is validated
by similar results from the US Navy3 and SOEST4 Hawaii univ labs in the case of one whale, and by similar whales
counting from the Columbia univ. ROSA5 lab in the case of multiple whales. At this time, our trackingmethod is the
only one giving typical speed and depth estimations for multiple emitting whales.

RESUME
Ce papier propose une méthode temps-réel de trajectographie par acoustique passive de plusieurs cétacés émet-

tant simultanément en utilisant un réseau d’au moins 4 hydrophones espacés de quelques centaines de mètres. Etant
donné l’intérêt accru pour les mammifères marins, des systèmes temps-réel et robustes sont nécessaires. Pour répon-
dre à cette demande, un algorithme temps-réel de trajectographie multiple a été développé. Après un filtrage non
paramétrique Teager-Kaiser-Mallat du signal, les différences de temps d’arrivée aux hydrophones sont estimées, se-
lectionnées, filtrées, et permettent d’estimer les positions des baleines pour un profil de célérité constant, linéaire
ou estimé. L’algorithme est testé sur des données réelles duNUWC1 et de l’AUTEC2. Notre modèle est validé par
des résultats similaires de l’US Navy3 et du laboratoire SOEST4 de l’université d’Hawaii dans le cas d’émissions
simples, et par une estimation du nombre de baleines du laboratoire ROSA5 de l’université de Columbia dans le cas
de plusieurs émissions simultanées. Actuellement, notre méthode de trajectographie est la seule donnant, dans le cas
de plusieurs baleines, des vitesses et des profondeurs vraisemblables.

1 Introduction

Processing of Marine Mammal (MM) signals for passive
oceanic acoustic localization is a problem that has recently
attracted attention in scientific literature and in some orga-
nizations like the AUTEC and the NUWC. Motivation for
processing MM signals stems from increasing interest in the
behavior of endangered MM. One of the goals of current re-
search in this field is to develop tools to localize the vocaliz-
ing and clicking whale for species monitoring. In this paper
we propose a low cost time-domain tracking algorithm based
on passive acoustics. The experiments of this paper consist
in tracking an unknown number of sperm whales (Physeter
catodon). Clicks are recorded on two datasets of 20 and 25
minutes on a open-ocean widely-spaced bottom-mounted hy-
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drophone array. The output of the method is the track(s) of
the MM(s) in 3D space and time.
This papers deals with the 3D tracking of MM using a widely-
spaced bottom-mounted array in deep water - two main re-
quirements for the localization technique presented here.It
focuses on sperm whale clicks; detection and classification
are not a concern. There were previous algorithms developed
in the state of art [3, 12, 11] but none are able to have satis-
fying results for multiple tracks. Most of them are far from
being real-time. The main goal is to build a robust and real-
time tracking model, despite ocean noise, multiple echoes,
imprecise sound speed profiles, an unknown number of vo-
calizing MM, and the non-linear time frequency structure of
most MM signals [7]. Background ocean noise results from
the addition of several noises: sea state, biological noises,
ship noise and molecular turbulence. Propagation character-
istics from an acoustic source to an array of hydrophones
include multipath effects (and reverberations), which create
secondary peaks in the Cross-Correlation (CC) function that
the generalized CC methods cannot eliminate. Here we im-



prove the algorithm from [3] to build a robust 3D tracking
algorithm. In Section 2 we propose a time-domain algorithm
for MM transient call localization. In Section 3 we show and
compare results of tracks estimates with results from other
specialists teams.

2 Material and method

The signals are records from the ocean floor near Andros Is-
land - Bahamas3, provided with celerity profiles and recorded
in March 2002. Datasets are sampled at 48 kHz and contain
MM clicks and whistles, background noises like distant en-
gine boat noises. Dataset1 (D1) is recorded on hydrophones
1 to 6 with 20 min length while dataset2 (D2) is recorded on
hydrophones 7 to 11 with 25 min length. We will use a con-
stant sound speed withc = 1500ms−1 and estimated celerity
profile, or a linear profile withc(z) = c0 + gz wherez is the
depth,c0 = 1542ms−1 is the sound speed at the surface and
g = 0.051s−1 is the gradient. Sound source tracking is per-
formed by continuous localization in 3D using Time Delays
Of Arrival (noted T) estimation from four hydrophones.

2.1 Signal filtering

A sperm whale click is a transient increase of signal energy
lasting about 20 ms (Figure 1-a). Therefore, we use the
Teager-Kaiser (TK) energy operator on the raw data. The TK
operator is defined for a discrete time signal as [8]:

Ψ[x(n)] = x2(n)−x(n+1)x(n−1), (1)

where n denotes the sample number. An important property
of the TK energy operator in Eq.(1) is that it is nearly in-
stantaneous given that only three samples are required in the
energy computation at each time instant. Considering the raw
signal as:

s(n) = x(n)+u(n),

wheres(n) is the raw signal,x(n) is the signal of interest
(clicks),u(n) is an additive noise defined as a process realiza-
tion considered wide sense stationary (WSS) Gaussian during
a short time, by applying the TK operator tos(n), Ψ[s(n)] can
be expressed as [9]:

Ψ[s(n)] ≈ Ψ[x(n)]+w(n),

wherew(n) is a random gaussian process which parameters
are in [9]. The output is dominated by the clicks energy.
Then, the sampling frequency is reduced to 480 Hz by the
mean of 100 adjacent bins to reduce the variance of the noise
and the data size. We apply the Mallat’s algorithm [10] with
the Daubechies wavelet (order 3). We chose this wavelet for

3Hydrophones positions (X(m),Y(m),Z(m)) are: H1=(18501,9494,-
1687);H2=(10447,4244,-1677);H3=(14119,3034,-1627);H4=(16179,6294,-
1672);H5=(12557,7471,-1670);H6=(17691,1975,-1633);H7=(10658,-
14953,-1530);H8=(12788,-11897,-1556);H9=(14318,-16189,-
1553);H1=(8672,-18064,-1361);H11=(12007,-19238,-1522)

its great similarity to the shape of a decimated click [2]. The
signal is denoised with a soft universal thresholding. This
thresholding is defined asD(uk,λ ) = sgn(uk)max(0, |uk| −
λ ), with uk the wavelet coefficients,λ =

√
(2loge(Q))σNσÑ

andQ is the length of the resolution level of the signal to de-
noise [1]. The noise varianceσN is calculated on each 10s
windows on the raw signal with a maximum likelihood cri-
terion. σÑ is the variance of the wavelet coefficients on a
resolution level of a generated, reduced and centered gaus-
sian noise. This filtering step is very fast and does not need
any parameter. Figure 1-c and 1-f are the filtered signals on
single (Figure 1-b) and multiple (Figure 1-d) emitting MM
recordings.

2.2 Rough TDOA (T̃) estimation

First, T estimates are based on MM click realignment only.
Every 10 s, and for each pair of hydrophones(i, j), the dif-
ference between timesti andt j of the arrival of a click train
on hydrophonesi and j is referred asT(i, j) = t j − ti . Its es-
timateT̃(i, j) is calculated by CC of 10-s chunks (overlap of
2s) of the filtered signal for hydrophonesi and j [3, 2]. We
keep the 35 (NbT ) highest peaks on each CC to determine the
corresponding̃T(i, j) (see Figure 1 for detail) . The filtered
signals give a very fast rough estimate ofT̃ (precision± 2
ms). Figure 1-e shows the CC with the raw signal and Figure
1-g with the filtered signal. The red circles highlight the 35
T̃. Without filtering, CC generates spurious delay estimates
and the tracks are not correct. The raw CC shows moreT̃
produced by noise than the filtered CC.

2.3 Echo identification and elimination

Each signal shows echoes for each click (Figure 1-b), maybe
due to the reflection of the click train off the ocean surface or
bottom or different water layers. Echoes may be responsible
for the detection of additional̃T in the previous step. We
use a method based on autocorrelation [3, 4, 5, 2] to compute
echoesE(i) on each 10s chunk and each hydrophone and then
eliminateT̃ correspond to a multiple of the echo.
For each pair of hydrophones(i, j), all T̃a(i, j) satisfying
one of the following equations are removed,k ∈ {1..4},a ∈
{2..NbT}:

T̃a(i, j)− T̃1(i, j) = k∗E(i)±ξ ,

T̃a(i, j)− T̃1(i, j) = −k∗E( j)±ξ .

whereξ = 2ms.

2.4 T̃ transitivity and filtering

Once manỹT for each pair of hydrophones have been elim-
inated, the remaining̃T are combined every 10s to select all
quadruplets of hydrophones whoseT̃ independent triplet cor-
respond to the same source. Thus we consider that a quadru-
plet of hydrophones(i, j,k,h) localized the same source with
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Figure 1: (a): detail of a click on the normalized .wav file format. (b): raw signal (D2) of hydrophone 7 (H7) during the first 10 seconds of
recording, containing 7 clicks and their echoes. (c): (b) after filtering.(d): raw signal (D1) of H3 during the first 10 seconds of recording
showing multiple emission. (e): CC between (d) and corresponding raw signal chunk of H1. (f): (d) after filtering. (g): CC between (f) and
corresponding filtered signal chunk of H1.

the T̃a,b,c,d,e, f if the 4 following equations are verified [3, 2]
for each timet:

T̃a(i, j)+ T̃b( j,k) = T̃d(i,k)±δ ,

T̃a(i, j)+ T̃c( j,h) = T̃f (i,h)±δ ,

T̃d(i,k)+ T̃e(k,h) = T̃f (i,h)±δ ,

T̃b( j,k)+ T̃e(k,h) = T̃c( j,h)±δ .

T̃ has been estimated with 2 ms precision, moreoverT̃ transi-
tivity only works for an isospeed model which means sound
rays move in a straight line. We consider the errorδ = 6ms.
The distribution of the maximum̃T rank for each triplet (Fig-
ure 2) in D1, is not negligible near the 35th rank.

2.5 Source localization with a constant profile

Tracks positions are:

{Xt ,∀t} with Xt = (xt ,yt ,zt)
T
.

X{i, j,k,h} are the known coordinates of hydrophonesi, j,k,h.
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Figure 2: MaximumT̃ CC rank histogram for each triplet

The three independent̃T of each hydrophones(i, j, k, h)
quadruplet measured on the windowst are noted:

{T̃a(i, j, t), T̃d(i,k, t), T̃f (i,h, t)}.

The modeled delays are:



Ta(i, j, t) =
‖Xt ,Hi‖−

∥∥Xt ,H j
∥∥

c
,

Td(i,k, t) =
‖Xt ,Hi‖−‖Xt ,Hk‖

c
, (2)

Tf (i,h, t) =
‖Xt ,Hi‖−‖Xt ,Hh‖

c
,

where‖ ‖ denotes the Euclidian norm. We assume that the
precision errors of the T due to the decimation are modeled
with a Gaussian, centered, additive, and uncorrelated noise
between sensors, notedεconsidered the same on each of the
windowst and with a varianceσ2 = ( ξ

3 )2 (σ contains 68% of
the Gaussian distribution).

T̃a(i, j, t) = Ta(i, j,Xt)+ εi, j,t ,

T̃d(i,k, t) = Td(i,k,Xt)+ εi,k,t , (3)

T̃f (i,h, t) = Tf (i,h,Xt)+ εi,h,t ,

Xt is estimated with a least square method. The least square
criteria to minimize is given by:

Q(Xt) =
1
2

[
T̃a(i, j, t)−Ta(i, j,Xt)

σ2

]2

+
1
2

[
T̃d(i,k, t)−Td(i,k,Xt)

σ2

]2

+
1
2

[
T̃f (i,h, t)−Tf (i,h,Xt)

σ2

]2

.

This case is a non linear criteria minimization. Indeed,
Q(Xt) contains the non linear function‖ ‖ (Eq.(2)). To solve
this problem, the classic recursive minimization method like
Gauss-Newton with the Levenberg-Marquardt technique can
be applied with an initialization to the middle of the hy-
drophones array.Xt estimate is noted̂Xt . After X̂t estimation,
the LMS error isQ(X̂t). It is adequate when it is inferior to
∆ = 10−6.

2.6 Joint celerity profile optimisation

It is possible, by adding a degree of freedom to Eq.(2), to esti-
mate an optimal celerity profile that will best fit the positions
estimates. Five hydrophones are necessary, which is the case
in D2, to calculate four independentT̃. The fourth adds a de-
gree of freedom to the system and permits the estimation of
X̂t ,

Xt = (xt ,yt ,zt ,ct)
T

,

wherext ,yt ,zt are the source coordinates andct the optimal
sound speed in windowst.
After this X̂t estimation, we inject thect numeric values in the
equations system (2) and the system is solved with the least
square function.

Figure 3: Geometry for a source and receiver in a linear sound speed
profile [13]

2.7 Source localization with a linear profile

It is well known that the ray paths in a medium with linear
sound speed profile are arcs of circles and further the radius
of the circle can be computed [13]. Figure 3 illustrates the ap-
propriate geometry.cs is the sound speed at the source andθs

is the launch angle of the ray at the source, measured relative
to the horizontal. Note one seeks to determine the launch an-
gle of the rayθs which will pass through the receiver located
at (xr,zr). From the geometry shown in Figure 3, the center
of the circle,(xc,zc), along which the ray path is an arc, can
be shown to be:

xc =
xs+xr

2
+

(zs−zr)

2(xs−xr)
(zr −zs+

2cs

g
),

zc = zs−
cs

g
.

(4)

For a linear sound speed profile, the course timeτ of the ray
can be evaluated to yield [13]:

τ =
1
g

{
log

(
zc−zs

zc−zr

)
− log

(
R+xc−xs

R+xc−xr

)}
. (5)

Using Eqs.(4)-(5) allows one to compute the propagation time
from the source to any receiver and hence allows one to com-
pute the predicted delays and then the whale position.

3 Results

For D2, three sound speed profile were used:a constant; or an
estimated; or a linear. The results are compared with the Mor-
rissey’s [11] and Nosal’s [12] methods. In Figure 4, there is
one whale, the results with the different methods are similar.
In Figure 5, the diving profile underlines a bias of about 50 to
100m between the linear - estimated and the constant profiles
results, which emphasizes the importance of the chosen pro-
files. Moreover with the linear sound speed, the results are
about the same as Morrissey’s and Nosal’s, who used profiles
corresponding to the period and place of the recordings.
Results for D1 are shown in Figure 6 and 7 for a linear sound
speed profile. We thus localize 5 MM. Moreover, according
to ROSA Lab estimation based on click clustering (Tab.1),
averaged number of MM for each 5min chunks in D1 (A)[6]
is similar to ours (B).



Figure 5: Diving profile of the MM in D2, our estimates with a linear (A), a constant profile (�) and an estimated profile (♦); and estimates
from Morrissey’s [11] (▽) and from Nosal’s [12] methods (o).

Figure 6: Plan view in D1. Each symbol correspond to one of the five whales. The arrows stress the directions of each whale. See Figure 7
for their diving profile. Whale 1:(o), 2:(+), 3:(A), 4:(·), 5:(x). Recording duration: 20min.



Figure 7: Averaged diving profile in D1. Each symbol correspond to one of the five whales. Whale 1:(o), 2:(+), 3:(A), 4:(·), 5:(x).

Figure 4: Plan view of the MM in D2, our estimates with a linear
(A), a constant profile (�) and an estimated profile (♦), threesome
are almost merged; and estimates from Morrissey’s [11] (▽) and
from Nosal’s [12] methods (o). Note the variance of the positions
with Nosal’s method. The whale direction is opposed to the Y axis.
Track and recording duration: 25min. The breaks in the track are
due to a temporary cessation of clicking or to noise of engine boats.

5min chunks 0-5 5-10 10-15 15-20
ROSA Lab 4.3 5.3 4 3.6

PIMC 4 4 4 3
∆ +0.3 +1.3 +0 +0.6

Table 1: Counting number estimations of whales in D1. First raw
is the five minutes chunks of D1, second is the averaged number
of whales estimations from ROSA Lab, third is our estimations
(PIMC) and the last raw is the difference between PIMC and
ROSA Lab estimations.
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Figure 8: Speed (averaged on 30s windows) statistics on the whole
set for each whale in D1 (whales 1 to 5) and D2 (whale 6). The
central line of the box is the median of speed and the lower and
higher lines are the quartiles. The whiskers show the extent of the
speed. Whale 5 seems to stop a moment at the end of the track (See
Figure 7).

3.1 The confidence regions

In section 2.5, because we consider a gaussian distribution,
the standard deviation of the noise isξ

3 . Then, we apply a

Monte Carlo method. For each̃T realization, the source po-
sition is calculated. We deduce the variance and the mean for
each position to plot the confidence regions with a confidence
level of 0.95, which means that there is 0.95 probability for
the whale to be in the ellipse centered on the position. In
D2, the estimated celerity profile described in section 2.6 was
used. The mean values of the confidence intervals on X, Y, Z
axes are about 18, 16 and 30 m (Figure 9). This justifies the
decimation on the raw signal, because the error on X and Y
axes are close to the sperm whale length (20m). The results
confirm that the errors on the vertical axis are meaningfully
higher than the other axes because the distance between each
hydrophones in this direction (maximum difference on the Z
axis between hydrophones is 200m) is smaller. The D1 re-
sults obtained with a linear profile (Figure 6), indicate five
trajectories.
The farthest whales in D1 from the hydrophones array center
have a larger uncertainty with an error of about 20 to 30m on
X and Y axes, while the whales close to the center exhibit an
error of about 10 to 20m like for D2 (Figure 6) . Those uncer-
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Figure 9: Confidence regions projection on X and Y and on Z and Y
axes for D2 trajectory.

tainties are reasonable according to the sperm whale length.

4 Discussion and conclusion

The tracking algorithm presented in this paper is non para-
metric and real-time on a standard laptop and works for one
or multiple emitting sperm whales. The results compared an
isovelocity water column and a linear sound speed profile.
Depth results with constant speed contains a bias errors due
to the refraction of the sound paths from the MM to the re-
ceivers what the linear speed profile or the joint celerity op-
timisation correct. Our algorithm has no species dependency
as long as it processes all transients. At this time, only our
algorithm gives localization results with typical speed (Fig-
ure 8) and depth estimations for multiple emitting whales. In
D2, results indicate that only one sperm whale was present
in the area, unless other whales in the area were quiet during
the selected 25-min period. Moreover, according to ROSA
Lab, the estimation number of MM for each 5min chunks in
D1 is similar to ours. Our method provides thus robust online
passive acoustics detecting/counting system of clicking MM
groups in open ocean. Further studies will be conducted for
click labeling and inter click analyses.
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